

3804 House

Project Number: 22-112 3804 E Mercer Way Mercer Island, WA 98040

Structural Calculations

Lateral Calculations	S1 –	S102
Gravity Calculations	S103 –	S226

Reviewed by: Nabil Kausal-Hayes, PE 206-601-9728 www.nkhengineering.com

> Prepared By: Allen Rishel, EIT

February 6th, 2024

۲

LATERAL LOAD CALCULATIONS FOR RESIDENTIAL PROPERTY LOCATED AT 3804 Mercer Way

Basis of Design

This document is showing the detail of design and calculations of framing, foundation and shear walls, for gravity and lateral loads according to IRC 2018, NDS 2018, IBC 2018, ASCE7-16, AISC 2015 and ACI 318-14.

The load distribution is as follow: Floor Dead Load ------ 15 psf Roof Dead Load------ 15 psf Floor Live Load------ 40 psf Roof Live Load------ 20 psf Roof Snow Load------ 25 psf Deck Live Load------ 60 psf Deck Dead Load------ 15 psf

The maximum wind speed is assumed 110 MPH per ASCE-7-16 with exposure category B for risk category II per King County.

Ground peak accelerations is 0.607g and seismic design category D2.

The maximum bearing pressure on soil was considered at least 1500 psf. Concrete strength is assumed to be at least 2500 psi

Material Properties for Design

- $f_c := 2500psi$ Concrete compressive strength $f_y := 60 \cdot ksi$ Yield strength of rebar $f_{soil.bearing} := 1500psf$ Minimum soil bearing capacity
- $\gamma_{concrete} \coloneqq 150 pcf \qquad \qquad \text{Concrete unit weight}$

 $\gamma_{steel} := 490 pcf$

Steel unit weight

E_s := 29000ksi

Young modulus of steel

 $E_{c} := 57000 \cdot \sqrt{\frac{f_{c}}{psi}} \cdot psi = 2.85 \times 10^{3} \cdot ksi$

Young modulus of concrete (ACI-318-14)

Load Assumptions

$LL_{floor} := 40 psf$	Floor live load
$DL_{floor} := 15psf$	Floor dead load
$DL_{roof} := 15psf$	Roof dead load
$LL_{roof} := 20psf$	Roof live load
$SL_{roof} := 25psf$	Roof snow load

LATERAL LOAD CALCULATION Parameters (SEISMIC & WIND)

Seismic Force Calculation on Building-ASCE7-16 for Wood Frame Structure

Site Class D was considered for this project according to IBC 1613.3.2

According to USGS Data for the site the seismic parameters are according to the followings

PGA := 0.607	Peak Ground Acceleration from USGS site
S _{DS} := 1.134	Design short period acceleration
S _S := 1.418	Short period spectral
$S_1 := 0.493$	Long Period Spectral
$F_a := 1.2$	Table 11.4.1
$F_V := 1.8$	Table 11.4.2
$\mathbf{S_{MS}} \coloneqq \mathbf{F_a} \cdot \mathbf{S_S} = 1.702$	11-4-1
	11-4-2

 $S_{D1} := \frac{2}{3} \cdot S_{M1} = 0.592$

 $S_{M1} := F_v \cdot S_1 = 0.887$

$$T_s := \frac{S_{D1}}{S_{DS}} \cdot s = 0.522 s$$

- $h_{building} \coloneqq 30 \mathrm{ft}$ Height of building
- W_{ext} := 12psf Weight of external walls

$T_a := 0.02 \cdot \left(\frac{h_{building}}{ft}\right)^{0.75} \cdot s =$	= 0.256 s Fund	damental pe cture	eriod of	ASCE 7-16-12.8.7
T _L := 6s	Long period Trans	sition	ŀ	ACE 7-16- Fig 22-14
R := 6.5	Seismic Modificati light frame	on factor for		ASCE 7-16- Table 12.2.1
I := 1.0	Importance factor residential building	for J		
$\frac{\mathrm{T}_{\mathrm{a}}}{1.5 \cdot \mathrm{T}_{\mathrm{s}}} = 0.328$	Ta is less than 1.5	Ts. E	Equation / be used	ASCE 716- 12.8.2 should
$C_{S} := \frac{S_{DS}}{\left(\frac{R}{I}\right)} = 0.174$	Seismic Respons	e Factor	ASC	CE 7-16-12.8.1.1
$C_{S.min} := .044S_{DS} \cdot I = 0.05$		Cs is more	e than mi	nimum-OK
$C_{S.Design} := max(C_S, C_{S.min})$	= 0.174			
Force Distribution Along the H $N_{story} := 3$ $i := 1 N_{story}$	eight	Number o including r	f story oof	
j := 1 N _{story}				
$W_1 := 2780 (ft^2) \cdot DL_{floor} + W_e$	$xt \cdot 248 \text{ ft} 10 \text{ ft} = 71.4$	6·kip		Total dead weight of second floor
$W_2 := 2250 \text{ft}^2 \cdot \text{DL}_{\text{floor}} + W_{\text{ext}}$	(230 ft) 12 ft = 66.8	7-kip		Total dead weight of second floor
$W_3 := 2250 \text{ft}^2 \cdot \text{DL}_{\text{roof}} + W_{\text{ext}}$	$\cdot 208 \mathrm{ft} \cdot \frac{12 \mathrm{ft}}{2} = 48.72$	26-kip		Total dead weight of third floor

4 of 104

Project Location: 7657 14TH ST MEDINA , WA

$$\begin{split} h_{floor_{1}} &\coloneqq 7 \text{ft} & \text{Height of first floor from ground} \\ h_{floor_{2}} &\coloneqq h_{floor_{1}} + 11 \text{ft} = 18 \cdot \text{ft} & \text{Height of second floor from ground} \\ h_{floor_{3}} &\coloneqq h_{floor_{2}} + 12 \text{ft} = 30 \cdot \text{ft} & \text{Height of second floor from ground} \\ V_{base_EQ.wall} &\coloneqq C_{S.Design} \cdot \sum_{i=1}^{N_{story}} W_{i} = 32.634 \cdot \text{kip} & \text{Total base shear due seismic for all building} \\ C_{v_{i}} &\coloneqq \frac{W_{i} \cdot h_{floor_{i}}}{N_{story}} & \text{Story force distribution factor-ASCE7-16-12.8-12} \end{split}$$

to g

$$C_{v_{i}} \coloneqq \frac{W_{i} \cdot h_{floor_{i}}}{\sum_{i=1}^{N_{story}} (W_{i} \cdot h_{floor_{i}})}$$

$$F_i := C_{v_i} \cdot V_{base_EQ.wall}$$

Seismic force at each floor

C_{vi} =

∙kip

∙kip

$$V_{\text{story}_j} \coloneqq \sum_{i=j}^{N_{\text{story}}} F_i$$

Shear at each floor

Wind Force Calculation on Building-ASCE7-16

I := 1	Risk category II for residential structure	ASCE7-16-Table 1.5.1
$V_{wind} := 110 \frac{mi}{r}$	Wind speed	ASCE7-16-Fig 26.5.1B
hr K _d := 0.85	Wind directionality factor for buildings	ASCE7-16-Table 26.6-1

Exposure Category B was considered for this design according to king County

L _{house}	:=	58ft
--------------------	----	------

House foot print dimension

 $W_{house} := 50.5 ft$

Topographic Factor

$$H_{zt} := 260 ft - 25 ft = 235 \cdot ft$$
Height of hill from lowest
side $L_h := 1125 ft - 438 ft = 687 \cdot ft$ Distance from hill to location with half of hill
height

$$K_1 := 0.75 \cdot \frac{H_{zt}}{L_h} = 0.257$$
 From table 26.8-1 for Exposure B

 $x := (1125 ft - 708 ft) = 417 \cdot ft~$ Distance from crest to building

- $\mu_{upwind} \coloneqq 1.5$ From table 26.8-1
- $\mu_{downwind} := 4$ From table 26.8-1-2D Escapement
- $\gamma := 2.5$ 2D Escapement

$$K_{2_upwind} \coloneqq 1 - \frac{x}{L_h \cdot \mu_{upwind}} = 0.595$$

$$K_{2_{downwind}} := 1 - \frac{x}{L_{h} \cdot \mu_{downwind}} = 0.848$$

$$K_3 := e^{-\gamma \cdot \frac{h_{\text{building}}}{L_h}} = 0.897$$

$$K_{zt.upwind} := (1 + K_1 \cdot K_{2_upwind} \cdot K_3)^2 = 1.293$$
 ASCE7-16-26.8.2

$$K_{zt.downwind} := \left(1 + K_1 \cdot K_{2_downwind} \cdot K_3\right)^2 = 1.428$$

 $K_{zt} := max(K_{zt.downwind}, K_{zt.upwind}) = 1.428$

Project Location: 7657 14TH ST MEDINA , WA

K _e := 1.0	Ground elevation factor	ASCE7-16-26.9
GC _{pi} := −0.18	Internal Pressure Coefficient for enclosed building	ASCE7-16-Table 26.13-1
K _z := 0.7	Velocity pressure exposure coefficient-Assume 25 ft total height for exposure B	ASCE7-16-Table 26.10-1
$q_{z} \coloneqq 0.00256 \cdot K_{z} \cdot K_{zt} \cdot K_{d} \cdot K_{d}$	$e \cdot \left(\frac{V_{wind}}{\frac{mi}{hr}}\right)^2 \cdot \frac{lbf}{ft^2} = 26.325 \cdot psf$	

$$\theta_{\text{roof}} := \operatorname{atan}\left(\frac{0}{12}\right) = 0 \cdot \deg$$
 Approximate roof angle

Wind Load On building Using Envelope Procedure-Chapter 28 ASCE7-16

10% of least horizontal dimension or 0.4 h, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft а

(0.9 m). Exception: For buildings with $\theta = 0$ to 7° and a least horizontal dimension greater than 300 ft (90 m), dimension *a* shall be limited to a maximum of 0.8 *h*.

Mean roof height, in feet (meters), except that eave height shall be used for $\theta\!\leq\!10^\circ\!.$ h

θ Angle of plane of roof from horizontal, in degrees.

$$a := \frac{\max(\min(0.1 \cdot \min(L_{house}, W_{house}), 0.4 \cdot h_{building}), 0.04 \cdot \min(L_{house}, W_{house}), 3 \text{ ft})}{\min(L_{house}, W_{house})} = 0.1$$

,

、

					Build	ling Surface					
1		2	3		4	11	E	2E	3E		4E
0.4	0	-0.69	-0.3	37	-0.29	0.6	51	-1.07	-0.5	53	-0.43
0.5	3	-0.69	-0.4	48	-0.43	0.8	30	-1.07	-0.6	59	-0.64
0.5	6	0.21	-0.4	43	-0.37	0.6	<u>i9</u>	0.27	-0.3	53	-0.48
0.5	6	0.56	-0.3	37	-0.37	0.6	59	0.69	-0.4	48	-0.48
					Building	g Surface					
1	2	3	4	5	6	1E	2E	3E	4E	5E	6E
0.45	0.60	0.27	0.45	0.40	0.20	0.48	1.07	-0.53	-0.48	0.61	-0.43
	1 0.4 0.5 0.5 1	1 0.40 0.53 0.56 0.56 1 2	1 2 0.40 -0.69 0.53 -0.69 0.56 0.21 0.56 0.56 1 2 3 0.45 0.60 0.37	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 0.40 -0.69 -0.37 -0.29 0.53 -0.69 -0.48 -0.43 0.56 0.21 -0.43 -0.37 0.56 0.56 -0.37 -0.37 Building 1 2 3 4 5 6 0.45 0.69 -0.45 0.46 0.39	1 2 3 4 11 0.40 -0.69 -0.37 -0.29 0.6 0.53 -0.69 -0.48 -0.43 0.8 0.56 0.21 -0.43 -0.37 0.6 0.56 0.56 -0.37 -0.37 0.6 Building Surface Lidding Surface	1 2 3 4 1E 0.40 -0.69 -0.37 -0.29 0.61 0.53 -0.69 -0.48 -0.43 0.80 0.56 0.21 -0.43 -0.37 0.69 0.56 0.56 -0.37 -0.37 0.69 Building Surface Liding Surface Distribution of the second seco	Building Surface 1 2 3 4 1E 2E 0.40 -0.69 -0.37 -0.29 0.61 -1.07 0.53 -0.69 -0.48 -0.43 0.80 -1.07 0.56 0.21 -0.43 -0.37 0.69 0.27 0.56 0.56 -0.37 -0.37 0.69 0.69 Building Surface I 2 3 4 5 6 1E 2E 3E 0.45 0.40 0.20 0.40 1.07 0.51	Building Surface 1 2 3 4 1E 2E 3E 0.40 -0.69 -0.37 -0.29 0.61 -1.07 -0.2 0.53 -0.69 -0.48 -0.43 0.80 -1.07 -0.2 0.56 0.21 -0.43 -0.37 0.69 0.27 -0.3 Building Surface Building Surface 1 2 3 4 5 6 1E 2E 3E 4E	Building Surface 1 2 3 4 1E 2E 3E 0.40 -0.69 -0.37 -0.29 0.61 -1.07 -0.53 0.53 -0.69 -0.48 -0.43 0.80 -1.07 -0.69 0.56 0.21 -0.43 -0.37 0.69 0.27 -0.53 Building Surface Building Surface Didding Surface

The structure is regular shape and less than 60 ft high, so chapter 28 is applicable to use

Load Case A

External pressure on wall for 10 deg roof (Conservatively assumed 20 deg)

ASCE7-16-Table 28.3-1

$$angle := \begin{pmatrix} 0 \\ 5 \\ 20 \\ 30 \\ 45 \\ 90 \end{pmatrix} deg \ wall_{p.factor.1} := \begin{pmatrix} 0.4 \\ 0.4 \\ 0.53 \\ 0.56 \\ 0.56 \\ 0.56 \\ 0.56 \end{pmatrix} \ wall_{p.factor.2} := \begin{pmatrix} -0.69 \\ -0.69 \\ -0.69 \\ 0.21 \\ 0.21 \\ 0.56 \end{pmatrix} wall_{p.factor.3} := \begin{pmatrix} -0.37 \\ -0.37 \\ -0.48 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.43 \\ -0.37 \end{pmatrix}$$

$$\text{wall}_{\text{p.factor.4}} := \begin{pmatrix} -0.29 \\ -0.29 \\ -0.43 \\ -0.37 \\ -0.37 \\ -0.37 \\ -0.37 \end{pmatrix} \text{ wall}_{\text{p.factor.1E}} := \begin{pmatrix} 0.61 \\ 0.61 \\ 0.8 \\ 0.69 \\ 0.69 \\ 0.69 \\ 0.69 \end{pmatrix} \text{ wall}_{\text{p.factor.2E}} := \begin{pmatrix} -1.07 \\ -1.07 \\ -1.07 \\ 0.27 \\ 0.27 \\ 0.69 \\ 0.69 \end{pmatrix}$$

10 of 104

wall_{p.factor.3E} :=
$$\begin{pmatrix} -0.53 \\ -0.53 \\ -0.69 \\ -0.53 \\ -0.53 \\ -0.48 \end{pmatrix}$$
 wall_{p.factor.4E} := $\begin{pmatrix} -0.43 \\ -0.43 \\ -0.43 \\ -0.64 \\ -0.48 \\ -0.48 \\ -0.48 \end{pmatrix}$

$$wall_{factor.A.1}(\theta) \coloneqq linterp(angle, wall_{p.factor.1}, \theta)$$

$$wall_{factor.A.2}(\theta) \coloneqq linterp(angle, wall_{p.factor.2}, \theta)$$

$$wall_{factor.A.3}(\theta) \coloneqq linterp(angle, wall_{p.factor.3}, \theta)$$

$$wall_{factor.A.4}(\theta) \coloneqq linterp(angle, wall_{p.factor.4}, \theta)$$

$$wall_{factor.A.1E}(\theta) \coloneqq linterp(angle, wall_{p.factor.1E}, \theta)$$

$$wall_{factor.A.2E}(\theta) := linterp(angle, wall_{p.factor.2E}, \theta)$$
$$wall_{factor.A.3E}(\theta) := linterp(angle, wall_{p.factor.3E}, \theta)$$
$$wall_{factor.A.4E}(\theta) := linterp(angle, wall_{p.factor.4E}, \theta)$$

Weighted averaging along length

Wall pressure

ASCE7-16-Table 28.3-1

$$\begin{aligned} & GC_{p_wall_windward.A} \coloneqq a \cdot wall_{factor.A.1E}(\theta_{roof}) + (1 - a) \cdot wall_{factor.A.1}(\theta_{roof}) = 0.421 \\ & GC_{p_wall_leeward.A} \coloneqq a \cdot wall_{factor.A.4E}(\theta_{roof}) + (1 - a) \cdot wall_{factor.A.3}(\theta_{roof}) = -0.376 \\ & \text{External pressure for roof} \qquad & \text{ASCE7-16-Table 28.3-1} \end{aligned}$$

$$GC_{p_roof_windward.A} := a \cdot wall_{factor.A.2E}(\theta_{roof}) + (1 - a) \cdot wall_{factor.A.2}(\theta_{roof}) = -0.728$$

$$GC_{p \text{ roof leeward.A}} := a \cdot wall_{factor.A.3E}(\theta_{roof}) + (1 - a) \cdot wall_{factor.A.3}(\theta_{roof}) = -0.386$$

Wind pressure for Case AASCE7-16-28-3-1

 $p_{wind_wall_windward.A} \coloneqq q_{z} \cdot (GC_{p_wall_windward.A} + if(GC_{p_wall_windward.A} > 0, -GC_{pi}, GC_{pi})) = 15.821 \cdot psf$ $p_{wind_wall_leeward.A} \coloneqq q_{z} \cdot (GC_{p_wall_leeward.A} + if(GC_{p_wall_leeward.A} > 0, -GC_{pi}, GC_{pi})) = -14.636 \cdot psf$ $p_{wind_roof_windward.A} \coloneqq q_{z} \cdot (GC_{p_roof_windward.A} + if(GC_{p_roof_windward.A} > 0, -GC_{pi}, GC_{pi})) = -23.903 \cdot psf$ $p_{wind_roof_leeward.A} \coloneqq q_{z} \cdot (GC_{p_roof_leeward.A} + if(GC_{p_roof_windward.A} > 0, -GC_{pi}, GC_{pi})) = -23.903 \cdot psf$

Load Case B

 $GC_{p_wall_windward.B} := a \cdot 0.61 + (1 - a) \cdot 0.4 = 0.421$

ASCE7-16-Table 28.3-1

$$GC_{p_wall_leeward.B} := -a \cdot 0.43 + -(1 - a) \cdot 0.29 = -0.304$$

$$GC_{p_wall_windward.B_orthogonal} := a - 0.48 + (1 - a) - 0.45 = -0.453$$

ASCE7-16-Table 28.3-1

$$GC_{p_wall_leeward.B_orthogonal} := a \cdot -0.48 + (1 - a) \cdot -0.45 = -0.453$$

External pressure for roofASCE7-16-Table 28.3-1
$$GC_{p_roof_windward.B} := a \cdot -1.07 + (1 - a) \cdot -0.69 = -0.728$$
Windward pressure for roof $GC_{p_roof_leeward.B} := -a \cdot 0.53 - (1 - a) \cdot .37 = -0.386$ Leeward pressure for roof

Wind pressure ASCE7-16-28-3-1

$$p_{wind_wall_windward.B} := q_z \cdot if (GC_{p_wall_windward.B} > 0, -GC_{pi}, GC_{pi}) = 4.738 \cdot psf$$

 $p_{wind_wall_leeward.B} := q_z \cdot if(GC_{p_wall_leeward.B} > 0, -GC_{pi}, GC_{pi}) = -4.738 \cdot psf$

$$p_{wind_wall_windward.B_orthogonal} := q_{z} \begin{pmatrix} GC_{p_wall_windward.B_orthogonal} & \cdots \\ + if (GC_{p_wall_windward.B_orthogonal} > 0, -GC_{pi}, GC_{pi}) \end{pmatrix} = -16.663 \cdot p_{z} \begin{pmatrix} GC_{p_wall_windward.B_orthogonal} & \cdots \\ + if (GC_{p_wall_windward.B_orthogonal} > 0, -GC_{pi}, GC_{pi}) \end{pmatrix} = -16.663 \cdot p_{z} \begin{pmatrix} GC_{p_wall_windward.B_orthogonal} & \cdots \\ + if (GC_{p_wall_windward.B_orthogonal} > 0, -GC_{pi}, GC_{pi}) \end{pmatrix} = -16.663 \cdot p_{z} \begin{pmatrix} GC_{p_wall_windward.B_orthogonal} & \cdots \\ + if (GC_{p_wall_windward.B_orthogonal} > 0, -GC_{pi}, GC_{pi}) \end{pmatrix} = -16.663 \cdot p_{z} \begin{pmatrix} GC_{p_wall_windward.B_orthogonal} & \cdots \\ + if (GC_{p_wall_windward.B_orthogonal} > 0, -GC_{pi}, GC_{pi}) \end{pmatrix}$$

$$p_{wind_wall_leeward.B_orthogonal} := q_z \cdot \begin{pmatrix} GC_{p_wall_leeward.B_orthogonal} & \cdots \\ + if \begin{pmatrix} GC_{p_wall_leeward.B_orthogonal} & > 0, -GC_{pi}, GC_{pi} \end{pmatrix} = -16.663 \cdot psf$$

$$p_{wind_roof_windward.B} := q_{z} \cdot \begin{pmatrix} GC_{p_roof_windward.B} \cdots \\ + if(GC_{p_roof_windward.B} > 0, -GC_{pi}, GC_{pi}) \end{pmatrix} = -23.903 \cdot psf$$

 $p_{wind_roof_leeward.B} := q_z \cdot \left(GC_{p_roof_leeward.B} + if \left(GC_{p_roof_leeward.B} > 0, -GC_{pi}, GC_{pi}\right)\right) = -14.9 \cdot psf$

ASD load combination used for frame design : - D+S - D+ 0.6W - D+0.7E - D+0.75x0.6W+0.75L+0.75S - D+0.75 x 0.7 E+0.75L+0.75S - 0.6 D+0.6W

- 0.6D+0.7E

LRFD load combination for concrete design: - 1.4D - 1.2D+1.6S - 1.2D+1.6S+0.5W - 1.2D+1.0W+0.5S - 1.2D+1.0E+0.2S - 0.9D+1.0W - 0.9D+1.0E

Shear Wall Design for Lateral Load in East-West Direction per NDS-SDPWS2015

First Floor-Shear wall

$$V_{EQ} := V_{story_1} \cdot \frac{750 \text{ft}^2}{2780 \text{ft}^2} = 8.804 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

 $V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 17.5 \text{ft} \cdot h_{floor_3} = 15.99 \cdot \text{kip}$

Wind load

 $w_s := 24 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$\frac{h_t}{w_s} = 0.375$ che	$\operatorname{sck}_{ratio} := \operatorname{if}\left(\frac{h_t}{w_s} > 3.5, "NG", "OK"\right)$	check _{ratio} = "OK"
(WSP) := if $\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.\right)$	$25 - 0.125 \cdot \frac{h_t}{w_s} $ Aspect ratio factor	(WSP) = 1.0
Overturning Forces		
$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$	Wind shear load at top of wall (ASD)	V _{rf.w} = 9.59·kip
$\mathbf{V}_{rf.E} := \left(0.7 \cdot \mathbf{V}_{EQ} \cdot \frac{\mathbf{w}_{s}}{\mathbf{L}_{s}}\right)$	Seismic shear load at top of wall (ASD)	$V_{rf.E} = 6.16 \cdot kip$
$\mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.w} = 86.3 \cdot kip \cdot ft$
$\mathbf{M}_{ot.E} \coloneqq \mathbf{V}_{rf.E} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.E} = 55.5 \cdot kip \cdot ft$

Resisting Forces

$$P_{rf} := 0 = 0.1bf$$

Total gravity load on wall

 $P_{rf} = 0 \cdot kip$

$$\begin{split} \mathbf{P}_{w} &\coloneqq \mathbf{W}_{ext} \cdot \left(\mathbf{h}_{t}\right) \cdot \left(\mathbf{w}_{s}\right) & \text{Wal self weight load} & \mathbf{P}_{w} &= 2.592 \cdot \text{kip} \\ \mathbf{M}_{res} &\coloneqq \left[\left(\mathbf{P}_{rf} + \mathbf{P}_{w}\right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & \mathbf{M}_{res} &= 18.662 \cdot \text{kip} \cdot \text{ft} \end{split}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1	sides	
$\Omega_{\rm s} \coloneqq 2.0$	(ASD shear capacity factor ref. section 4.3.3)	
$\Omega_{0} \coloneqq 2.5$	Overstrength factor	
$\mathbf{w}_{\mathbf{V}.\mathbf{W}} \coloneqq \frac{\mathbf{V}_{\mathrm{rf.W}}}{\mathbf{w}_{\mathrm{s}}} = 400 \cdot \mathrm{plf}$	Wind shear flow	
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 257 \cdot plf$	Seismic shear flow	
$\mathbf{w}_{all.w} \coloneqq \frac{(WSP) \cdot \mathbf{v}_{w.7_16.8d.4'}}{\Omega_s}$	$\frac{n}{2} = 490 \cdot \text{plf} \text{ check}_{WV} := \text{ if} \left(\frac{W_{V,W}}{W_{all,W}} > 1.0, "NG", "OK" \right)$	')
	$\frac{W_{V.W}}{W} = 0.816$	$check_{WV} = "OK"$
	^w all.w	
$\mathbf{w}_{all.E} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{s.7_16.8d.4^{\cdot r}}}{\Omega_s}$	$\frac{1}{2} = 350 \cdot \text{plf}$ check _{wE} := if $\left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "C$	ОК")
		$check_{wE} = "OK"$

Single Sided 7/16" sheathing w/ 8d @ 4<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

$$\begin{split} & \textbf{Sill Plate Anchorage} \quad C_{D} \coloneqq 1.6 \\ & \textbf{tsp} \coloneqq 1.5 & \textbf{isl plate thickness} \quad disa \succeq 0.5 \textbf{in} \quad Anchor Diameter \quad \textbf{sp}_{a} \coloneqq 24 \textbf{in} \quad Anchor spacing \\ & \textbf{Z}_{II} \coloneqq \textbf{v}_{A.625} \underbrace{2x, C_{D}}_{2x, C_{D}} = 1.488 \text{-kip} \quad Allowable load parallel to grain (ref. NDS table 12) \\ & \textbf{v}_{sp} \coloneqq \max(w_{v,w}, w_{v,E}\Omega_{0}) \cdot \textbf{sp}_{a} = 1.284 \text{-kip} \quad Shear boad to each anchor \\ & Check_{a} \coloneqq if(\textbf{V}_{sp} > \textbf{Z}_{II}, "NG", "OK") \quad ratio_{a} \coloneqq \frac{\textbf{V}_{sp}}{\textbf{Z}_{II}} = 0.863 \quad Check_{a} = "OK" \\ & \textbf{Use 5/8" Dia. Anchor at 240 s. (7" min. embed)} \\ & \textbf{Holdown} \\ & \textbf{T} \coloneqq \frac{\max(M_{oL,W}, M_{oLE}; \Omega_{0}) - M_{res}}{w_{s}} = 5 \text{-kip} \\ & check_{T} \coloneqq if(T > 150 \text{lbf}, "HD REQID", "NOT REQID") \quad check_{T} = "HD REQID" \\ & \textbf{T}_{all} \coloneqq HDU5 = 5.645 \text{-kip} \quad Allowable tension load \\ & check_{HD} \coloneqq if\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \quad ratio \coloneqq \frac{T}{T_{all}} = 0.886 \quad check_{HD} \equiv "OK" \\ & \textbf{Anchor} \\ & \textbf{d}_{b} \coloneqq \left\{ \frac{5}{8} \text{in} \text{ if } T_{all} = HDU4 \lor T_{all} = HDU5 \\ & \textbf{Bott diameter} \\ & \frac{7}{8} \text{in} \text{ if } T_{all} = HDU4 \lor T_{all} = HDU5 \\ & \textbf{Lin otherwise} \\ & \textbf{d}_{b} = 0.625 \text{-in} \\ & \textbf{A}_{b} \coloneqq \frac{\pi}{4} \left(\textbf{d}_{b} \right)^{2} = 0.307 \text{-in}^{2} \quad Area of bott including thread} \\ & \textbf{F}_{y} \cong 36 \text{-kip} \\ & \textbf{G}_{check_{anchor}} \coloneqq \left(\text{if}\left(\frac{T}{T_{a.capacity}} \le 1, "OK", "NG" \right) \right) \quad \frac{T}{T_{a.capacity}} = 0.756 \\ & \text{Check_{anchor}} = "OK" \\ & \text{Check_{anchor}} = "OK" \\ \end{array}$$

18 of 104

Footing Uplift

$L_{ftg} := 24ft$	Length of footing	t _{slab} := 0in	Slab thickness
$W_{ftg} := 16in$	Width of footing	trib _{slab} := 0ft	Slab tributary
t _{ftg} := 6in	Thickness of footing	t _{stem} := 6in	Stem wall thick
trib _{flr} := 0	Floor/deck tributary	ht _{stem} := 18in	Stem wall height

$$wt_{resist} := \begin{bmatrix} \left(W_{ftg} \cdot t_{ftg} + t_{slab} \cdot trib_{slab} + t_{stem} \cdot ht_{stem} \right) \cdot L_{ftg} \cdot 150 \text{pcf} + \left(P_{rf} + P_{w} \right) \dots \\ + \left(\frac{W_{ftg} - t_{stem}}{2} \right) \cdot ht_{stem} \cdot L_{ftg} \cdot 120 \text{pcf} \end{bmatrix} = 9.492 \cdot \text{kip}$$

$$e_{ftg} := \frac{M_{ot.w}}{wt_{resist}} = 9.097 \cdot ft$$

$$check_{ftg} := if \left(e_{ftg} \le \frac{L_{ftg}}{2}, "OK", "NG-Axial Load is Outside of Footing" \right) \qquad check_{ftg} = "OK"$$

Use 1'-4"W x 8"D footing w/ (3) #4 Long., #4 @ 10" o.c. Trans

 $V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 19 \text{ft} \cdot h_{floor_3} = 17.361 \cdot \text{kip}$

Wind load

Aspect Ratio (Blocked Shear Wall)

$\frac{h_t}{w_s} = 1.286$ che	$ck_{ratio} := if\left(\frac{h_t}{w_s} > 3.5, "NG", "OK"\right)$	check _{ratio} = "OK"
(WSP) := if $\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.2\right)$	$25 - 0.125 \cdot \frac{h_t}{w_s} $ Aspect ratio factor	(WSP) = 1.0
Overturning Forces		
$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$	Wind shear load at top of wall (ASD)	$V_{rf.w} = 10.42 \cdot kip$
$\mathbf{V}_{rf.E} := \left(0.7 \cdot \mathbf{V}_{EQ} \cdot \frac{\mathbf{w}_{s}}{\mathbf{L}_{s}}\right)$	Seismic shear load at top of wall (ASD)	$V_{rf.E} = 7.4 \cdot kip$
$\mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.w} = 93.7 \cdot kip \cdot ft$
$\mathbf{M}_{ot.E} \coloneqq \mathbf{V}_{rf.E} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.E} = 66.6 \cdot kip \cdot ft$

Resisting Forces

$$P_{rf} := \left(DL_{floor}\right) \cdot \left(\frac{15ft}{2}\right) \cdot w_{s} + 5626lbf = 6.413 \times 10^{3} \cdot lbf$$

Total gravity load on wall

$$P_{rf} = 6.413 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s}) \qquad \text{Wal self weight load} \qquad P_{w} = 0.756 \cdot \text{kip}$$
$$M_{res} := \left[(P_{rf} + P_{w}) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \quad \text{Resisting moment (ASD)} \qquad M_{res} = 15.056 \cdot \text{kip} \cdot \text{ft}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2	sides
$\Omega_{\rm s} := 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} := 2.5$	Overstrength factor
$w_{v.w} := \frac{V_{rf.w}}{w_s} = 1488 \cdot plf$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 1056 \cdot plf$	Seismic shear flow
$\mathbf{w}_{all.w} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{w.7_16.8d.2}}{\Omega_{s}}$	$\frac{\mathbf{v}_{n}}{\mathbf{w}_{all.w}} = 1640 \cdot \mathbf{pl} \operatorname{check}_{WV} := \operatorname{if}\left(\frac{w_{V.W}}{w_{all.w}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{V.W}}{W_{V.W}} = 0.907$ check _{WV} = "OK"
	w _{all.w}
$\mathbf{w}_{all.E} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{s.7_16.8d.2^{\cdot 1}}}{\Omega_s}$	= 1170 plf check _{wE} := if $\left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{v.E}}{W_{v.E}} = 0.003$ check _{wE} = "OK"

w_{all.E}

Double Sided 7/16" sheathing w/ 8d @ 2<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 21.62 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

$$T_{all} := 2HDU14 = 21.54 \text{ kip}$$
Allowable tension loadcheck_{HD} := if $\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$ ratio := $\frac{T}{T_{all}} = 1.004$ check_{HD} = "NG"AnchorIt is less than 5%
above-EOR is OKIt is less than 5%
above-EOR is OK $d_b := \left| \begin{array}{c} \frac{5}{8} \text{ in } \text{ if } T_{all} = HDU4 \lor T_{all} = HDU5 \\ 1 \text{ in otherwise} \end{array} \right|$ Bolt diameter $d_b = 1 \cdot \text{in}$ $A_{b} := \frac{\pi}{4} \cdot (d_b)^2 = 0.785 \cdot \text{in}^2$ Area of bolt including thread $F_y := 36 \text{ksi}$ Nominal strength of bolt-F1554 $\Omega := 1.67$ ASD factor

$$T_{a.capacity} := \frac{A_b \cdot F_y}{\Omega} = 16.931 \cdot kip$$

$$Check_{anchor} := \left(if \left(\frac{\frac{T}{2}}{T_{a.capacity}} \le 1, "OK", "NG"\right)\right) \quad \frac{\frac{T}{2}}{T_{a.capacity}} = 0.638$$

$$Check_{anchor} = "OK"$$

Footing Uplift

$L_{ftg} := 12ft$	Length of footing	$t_{slab} := 4in$	Slab thickness
$W_{ftg} := 18in$	Width of footing	trib _{slab} := 18ft	Slab tributary
$t_{ftg} := 6in$	Thickness of footing	t _{stem} := 6in	Stem wall thick
trib _{flr} := 0	Floor/deck tributary	ht _{stem} := 18in	Stem wall height
wt _{resist} := $\begin{bmatrix} (W_{ftg} \cdot t_{ftg} + (W_{ftg} - t_{ftg} + (W_{ftg} - t_{ftg} + (W_{ftg} - t_{ftg} - t_{ftg} + (W_{ftg} - t_{ftg} + (W$	$\frac{\mathbf{t}_{slab} \cdot trib_{slab} + \mathbf{t}_{stem} \cdot ht_{stem} \cdot L_{ftg} \cdot 1}{\frac{\mathbf{t}_{stem}}{\mathbf{b}} \cdot ht_{stem} \cdot L_{ftg} \cdot 120 \text{ pcf}}$	$50\text{pcf} + \left(P_{rf} + P_{w}\right) \dots$	= 21.75·kip
$e_{ftg} := \frac{M_{ot.w}}{wt_{resist}}$	$- = 4.31 \cdot \text{ft}$		

$\begin{pmatrix} L_{ftg} \end{pmatrix}$	
check _{ftg} := if $e_{ftg} \le \frac{ng}{2}$, "OK", "NG-Axial Load is Outside of Footing"	$check_{ftg} = "OK"$
Use 1'-4"W x 8"D footing w/ (3) #4 Long., #4 @ 10" o.c. Trans	

$$V_{EQ} := V_{story_1} \cdot \frac{1000 \text{ft}^2}{2780 \text{ft}^2} = 11.739 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

 $V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 22 ft \cdot h_{floor_3} = 20.102 \cdot kip$

Wind load

Aspect Ratio (Blocked Shear Wall)

$\frac{h_t}{w_s} = 0.75$ cho	$\operatorname{eck}_{ratio} := \operatorname{if}\left(\frac{h_t}{w_s} > 3.5, "NG", "OK"\right)$	check _{ratio} = "OK"
(WSP) := if $\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.\right)$	$25 - 0.125 \cdot \frac{h_t}{w_s} $ Aspect ratio factor	(WSP) = 1.0
Overturning Forces		
$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$	Wind shear load at top of wall (ASD)	V _{rf.w} = 5.68·kip
$\mathbf{V}_{rf.E} := \left(0.7 \cdot \mathbf{V}_{EQ} \cdot \frac{\mathbf{w}_{s}}{\mathbf{L}_{s}}\right)$	Seismic shear load at top of wall (ASD)	V _{rf.E} = 3.87·kip
$\mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.w} = 51.1 \cdot kip \cdot ft$
$M_{ot.E} := V_{rf.E} \cdot h_t$	Overturning moment (ASD)	$M_{ot.E} = 34.8 \cdot kip \cdot ft$

Resisting Forces

$$P_{rf} := 0 = 0 \cdot lbf$$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s}) \qquad \text{Wal self weight load} \qquad P_{w} = 1.296 \cdot \text{kip}$$
$$M_{res} := \left[(P_{rf} + P_{w}) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \quad \text{Resisting moment (ASD)} \qquad M_{res} = 4.666 \cdot \text{kip} \cdot \text{fres}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1	sides
$\Omega_{\rm s} := 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} \coloneqq 2.5$	Overstrength factor
$w_{v.w} := \frac{V_{rf.w}}{w_s} = 473 \cdot plf$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 322 \cdot plf$	Seismic shear flow
$\mathbf{w}_{\text{all.w}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{\text{w.7_16.}}}{\Omega_{\text{s}}}$	$\frac{\text{d.3}^{\text{n}}}{\text{m}} = 630 \text{ plf } \text{check}_{WV} := \text{if}\left(\frac{W_{V.W}}{W_{all.W}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{V.W}}{W_{V.W}} = 0.751$ check _{WV} = "OK"
	^w all.w
$\mathbf{w}_{all.E} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{s.7_16.8}}{\Omega_s}$	$\frac{3^{\cdot n}}{2} = 450 \cdot \text{plf} \qquad \text{check}_{wE} := \text{if}\left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$
	$\frac{w_{v.E}}{w_{v.E}} = 0.716$ check _{wE} = "OK"
	$\frac{1}{W_{all.E}} = 0.710$

Double Sided 7/16" sheathing w/ 8d @ 3<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Footing Uplift

Shear Wall Design for Lateral Load in North-South Direction per NDS-SDPWS2015

Firs Floor-Shear wall

As the retaining wall at west side is high up, it is assumed that the base shear for half of building (west side) will be taken by concrete walls for shear in norht-south direction and below would be wood frame wall designed for other half in east side.

$$V_{EQ} := V_{story_1} \cdot \frac{177 \text{ft}^2}{2780 \text{ft}^2} = 2.078 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

$$V_{wind} \coloneqq (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 4ft \cdot (h_{floor_3}) = 3.655 \cdot kip$$

Wind load

 $w_s := (3ft + 8in)$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\begin{split} &\frac{h_{t}}{w_{s}} = 2.455 \qquad \text{check}_{ratio} \coloneqq \text{if} \left(\frac{h_{t}}{w_{s}} > 3.5, \text{"NG"}, \text{"OK"} \right) \qquad \text{check}_{ratio} \equiv \text{"OK"} \\ &(\text{WSP}) \coloneqq \text{if} \left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}} \right) \qquad \text{Aspect ratio factor} \qquad (\text{WSP}) = 0.9 \\ &\textbf{Overturning Forces} \\ &V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_{s}}{L_{s}} \right) \qquad \text{Wind shear load at top of wall} \qquad V_{rf.w} = 3.45 \cdot \text{kip} \\ &V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_{s}}{L_{s}} \right) \qquad \text{Seismic shear load at top of} \qquad V_{rf.E} = 2.29 \cdot \text{kip} \end{split}$$

Project Location: 7657 14TH ST MEDINA, WA

$\mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.w} = 31 \cdot kip \cdot ft$
$\mathbf{M}_{ot.E} \coloneqq \mathbf{V}_{rf.E} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.E} = 20.6 \cdot kip \cdot ft$

Resisting Forces

$P_{rf} := \left(DL_{floor}\right) \cdot \left(\frac{12ft}{2}\right) \cdot w_{s}$	Total gravity load on wall

 $P_{rf} = 0.33 \cdot kip$

$\mathbf{P}_{\mathbf{W}} := \mathbf{W}_{\mathbf{ext}} \cdot \left(\mathbf{h}_{t}\right) \cdot \left(\mathbf{w}_{s}\right)$	Wall self weightload	$P_{W} = 0.396 \cdot kip$
$\mathbf{M}_{\text{res}} := \left[\left(\mathbf{P}_{\text{rf}} + \mathbf{P}_{\text{w}} \right) \cdot \frac{\mathbf{w}_{\text{s}}}{2} \right] \cdot 0.$	6 Resisting moment (ASD)	$M_{res} = 0.799 \cdot kip \cdot ft$

- Plywood Shear (ref. ANSI/AF&PA SDPWS)
- n := 2 sides $\Omega_{\rm s} \coloneqq 2.0$ (ASD shear capacity factor ref. section 4.3.3) $Ω_0 := 2.5$ Overstrength factor
- $w_{v.w} := \frac{V_{rf.w}}{\cdots} = 940 \cdot plf$ Wind shear flow

$$w_s$$

 $w_{v,E} := \frac{V_{rf,E}}{W_{rf,E}} = 623 \cdot plf$ Se

$$w_{v.E} := \frac{v_{rf.E}}{w_s} = 623 \cdot \text{plf} \qquad \text{Seismic shear flow}$$

$$w_{all.w} := \frac{(WSP) \cdot v_{w.7_16.8d.4^{\cdot n}}}{\Omega_s} = 924.3 \cdot \text{plf} \text{ check}_{WV} := \text{if} \left(\frac{w_{v.W}}{w_{all.W}} > 1.0, "NG", "OK"\right)$$

$$\frac{w_{all.w}}{w_{all.w}} = 1.017$$

$$\frac{check_{wv}}{w_{all.w}} = "NG"$$
It is less than 5 above-FOR is

$$w_{all.E} := \frac{(WSP) \cdot v_{s.7_16.8d.4 \cdot n}}{\Omega_s} = 660.2 \cdot plf \qquad check_{wE} := if \left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$$
$$\frac{w_{v.E}}{w_{all.E}} = 0.944$$

32 of 104

Double Sided 7/16" sheathing w/ 8d @ 4<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Sill Plate Anchorage $C_D := 1.6$ $t_{sp} := 1.5in$ Sill plate thickness $dia_a := 0.5in$ Anchor Diameter $sp_a := 12in$ Anchor spacing $Z_{11} := v_{A.625_2x} \cdot C_D = 1.488 \cdot kip$ Allowable load parallel to grain (ref. NDS table 12) $V_{sp} := max(w_{v.w}, w_{v.E} \cdot \Omega_o) \cdot sp_a = 1.558 \cdot kip$ Shear load to each anchor $V_{sp} := max(w_{v.w}, w_{v.E} \cdot \Omega_o) \cdot sp_a = 1.558 \cdot kip$ Shear load to each anchorCheck_a := if $(V_{sp} > Z_{11}, "NG", "OK")$ ratio_a := $\frac{V_{sp}}{Z_{11}} = 1.047$ Check_a = "NG"Use 5/8" Dia. Anchor at 30"o.c. (7" min. embed)It is less than 5% above-EOR is OK

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 13.807 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{a11} := 2HDU8 = 13.53 \cdot kip$ Allowable tension load $\operatorname{check}_{\operatorname{HD}} := \operatorname{if}\left(\frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} > 1.0, "\mathrm{NG"}, "\mathrm{OK"}\right) \qquad \operatorname{ratio} := \frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} = 1.02$ check_{HD} = "NG" It is less than 5% Anchor above-EOR is OK $d_{b} := \begin{cases} \frac{5}{8} \text{ in } \text{ if } T_{all} = \text{HDU4} \lor T_{all} = \text{HDU5} \\ \\ \frac{7}{8} \text{ in } \text{ if } T_{all} = \text{HDU8} \end{cases}$ Bolt diameter 1 in otherwise $d_{h} = 1 \cdot in$ $A_b := \frac{\pi}{4} \cdot \left(d_b \right)^2 = 0.785 \cdot in^2$ Area of bolt including thread $F_v := 36 ksi$ Nominal strength of bolt-F1554 $\Omega := 1.67$ ASD factor $T_{a.capacity} := \frac{A_b \cdot F_y}{\Omega} = 16.931 \cdot kip$

Check_{anchor} :=
$$\left(if \left(\frac{T}{T_{a.capacity}} \le 1, "OK", "NG" \right) \right) = \frac{T}{T_{a.capacity}} = 0.816$$

Check_{anchor} = "OK"

Footing Uplift

$$V_{EQ} := V_{story_1} \cdot \frac{250 \text{ft}^2}{2780 \text{ft}^2} = 2.935 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

 $V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 6ft \cdot (h_{floor_3}) = 5.482 \cdot kip$

Wind load

 $w_s := 2ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\begin{split} \frac{h_t}{w_s} &= 4.5 \\ & \text{check}_{ratio} \coloneqq \text{if} \left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"} \right) \\ & \text{check}_{ratio} \equiv \text{"NG"} \\ & \text{these segments will be designed as portal frame } \\ & (\text{WSP}) \coloneqq \text{if} \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s} \right) \\ & \text{Aspect ratio factor} \\ & (\text{WSP}) \equiv 0.7 \\ & \textbf{Overturning Forces} \\ & \text{V}_{rf.w} \coloneqq \left(0.6 \cdot \text{V}_{wind} \cdot \frac{w_s}{\text{L}_s} \right) \\ & \text{Wind shear load at top of wall} \\ & \text{V}_{rf.w} \coloneqq \left(0.6 \cdot \text{V}_{wind} \cdot \frac{w_s}{\text{L}_s} \right) \\ & \text{Seismic shear load at top of wall} \\ & \text{V}_{rf.E} \coloneqq \left(0.7 \cdot \text{V}_{EQ} \cdot \frac{w_s}{\text{L}_s} \right) \\ & \text{Seismic shear load at top of} \\ & \text{W}_{rf.E} = 0.82 \cdot \text{kip} \\ & \text{M}_{ot.w} \coloneqq \text{V}_{rf.w} \cdot h_t \\ & \text{Overturning moment (ASD)} \\ & \text{M}_{ot.E} \coloneqq \text{V}_{rf.E} \cdot h_t \\ & \text{Overturning moment (ASD)} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}_{ot.E} \equiv 7.4 \cdot \text{kip} \cdot \text{ft} \\ & \text{M}$$

Resisting Forces

$$P_{rf} := \left(DL_{floor}\right) \cdot \left(\frac{12ft}{2}\right) \cdot w_{s}$$

Total gravity load on wall

$$P_{rf} = 0.18 \cdot kip$$

$$\begin{split} \mathbf{P}_{w} &\coloneqq \mathbf{W}_{ext} \cdot \left(\mathbf{h}_{t}\right) \cdot \left(\mathbf{w}_{s}\right) & \text{Wal self weight load} & \mathbf{P}_{w} &= 0.216 \cdot \text{kip} \\ \mathbf{M}_{res} &\coloneqq \left[\left(\mathbf{P}_{rf} + \mathbf{P}_{w}\right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & \mathbf{M}_{res} &= 0.238 \cdot \text{kip} \cdot \text{ft} \end{split}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

Check Portal Frame Loads

$$L_{portal} := 9ft + 8in$$

$$M_{base} := \frac{\max\left[\left(\frac{V_{EQ}}{3}\right) \cdot 0.7 \cdot \Omega_{o}, \frac{V_{wind}}{3} \cdot 0.6\right] \cdot h_{t}}{4} = 3.852 \cdot kip \cdot ft \qquad \begin{array}{l} \text{Bending moments}\\ \text{base of portal free are 3 ported}\\ \text{(there are 3 ported}) \end{array}$$

nt at the ame tal frame)

$$T_{\text{holdown}} \coloneqq \frac{M_{\text{base}}}{w_{\text{s}}} \dots = 2.288 \cdot \text{kip}$$
$$+ \frac{-DL_{\text{floor}} \cdot L_{\text{portal}} \cdot \frac{12\text{ft}}{2}}{2} + \frac{\max\left[\left(\frac{V_{\text{EQ}}}{3}\right) \cdot 0.7 \cdot \Omega_{\text{o}}, \frac{V_{\text{wind}}}{3} \cdot 0.6\right] \cdot h_{\text{t}} - 2 \cdot M_{\text{base}}}{L_{\text{portal}}}$$

Use HDU 4-SDS 2.5 either side

$$V_{EQ} := V_{story_1} \cdot \frac{850 \text{ft}^2}{2780 \text{ft}^2} = 9.978 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

 $V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 14ft \cdot (h_{floor_3}) = 12.792 \cdot kip$

Wind load

First Segment:

 $w_s := 2ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\begin{split} \frac{h_{t}}{w_{s}} &= 4.5 & \operatorname{check}_{ratio} \coloneqq \operatorname{if}\left(\frac{h_{t}}{w_{s}} > 3.5, "NG", "OK"\right) & \operatorname{check}_{ratio} \equiv "NG" \\ \text{these segments will be simpson strong wall} \\ (WSP) &\coloneqq \operatorname{if}\left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}}\right) & \operatorname{Aspect ratio factor} & (WSP) = 0.7 \\ \hline \textbf{Overturning Forces} \\ V_{rf.w} &\coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_{s}}{L_{s}}\right) & \text{Wind shear load at top of wall} & V_{rf.w} = 3.84 \cdot \operatorname{kip} \\ V_{rf.E} &\coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_{s}}{L_{s}}\right) & \operatorname{Seismic shear load at top of} \\ W_{ot.w} &\coloneqq V_{rf.w} \cdot h_{t} & \operatorname{Overturning moment}(ASD) & M_{ot.w} \equiv 34.5 \cdot \operatorname{kip} \cdot \operatorname{ft} \\ M_{ot.E} &\coloneqq V_{rf.E} \cdot h_{t} & \operatorname{Overturning moment}(ASD) & M_{ot.E} \equiv 31.4 \cdot \operatorname{kip} \cdot \operatorname{ft} \\ \hline \textbf{M}_{ot.E} &\equiv 31.4 \cdot \operatorname{kip} \cdot \operatorname{ft} \\ \hline \textbf{M}_{ot.E} &\coloneqq \mathbf{M}_{s} \cdot \mathbf{$$

Use simpson-tie strong wall WSH 24x9

Shear Wall Design for Lateral Load in East-West Direction per NDS-SDPWS2015

Second Floor- Shear wall

$$V_{EQ} := V_{story_2} \cdot \frac{488 \text{ft}^2}{2250 \text{ft}^2} = 5.96 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

$$V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 12 \text{ft} \cdot (h_{floor_3} - h_{floor_1}) = 8.406 \cdot \text{kip}$$

Wind load

Aspect Ratio (Blocked Shear Wall)

$$\begin{split} \frac{h_{t}}{w_{s}} &= 1.044 & \text{check}_{ratio} \coloneqq \text{if} \left(\frac{h_{t}}{w_{s}} > 3.5, \text{"NG"}, \text{"OK"} \right) & \text{check}_{ratio} \equiv \text{"OK"} \\ (\text{WSP}) &\coloneqq \text{if} \left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}} \right) & \text{Aspect ratio factor} & (\text{WSP}) = 1.0 \\ \hline \textbf{Overturning Forces} & \text{V}_{rf.w} \coloneqq \left(0.6 \cdot \text{V}_{wind} \cdot \frac{w_{s}}{L_{s}} \right) & \text{Wind shear load at top of wall} & \text{V}_{rf.w} = 1.26 \cdot \text{kip} \\ \text{V}_{rf.E} \coloneqq \left(0.7 \cdot \text{V}_{EQ} \cdot \frac{w_{s}}{L_{s}} \right) & \text{Seismic shear load at top of} & \text{V}_{rf.E} = 1.04 \cdot \text{kip} \end{split}$$

$\mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.w} = 12.6 \cdot kip \cdot ft$
$\mathbf{M}_{ot.E} \coloneqq \mathbf{V}_{rf.E} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.E} = 10.4 \cdot kip \cdot ft$

Resisting Forces

$$P_{rf} := 0 = 0 \cdot lbf$$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

$$\begin{split} P_{w} &\coloneqq W_{ext} \cdot (h_{t}) \cdot (w_{s}) & \text{Wal self weight load} \\ M_{res} &\coloneqq \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} \\ \end{split}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$\mathbf{n} := 1$	sides
$\Omega_{\rm s} \coloneqq 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} \coloneqq 2.5$	Overstrength factor
$w_{v.w} := \frac{V_{rf.w}}{w_s} = 132 \cdot plf$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 109 \cdot plf$	Seismic shear flow
$\mathbf{w}_{all.w} \coloneqq \frac{(WSP) \cdot \mathbf{v}_{w.7_16.8d.6}}{\Omega_{s}}$	$\frac{n}{w_{v.w}} = 335 \cdot plf \qquad check_{wv} := if\left(\frac{w_{v.w}}{w_{all.w}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{V.W}}{W} = 0.394$ check _{WV} = "OK"
	^w all.w
$\mathbf{w}_{all.E} \coloneqq \frac{(WSP) \cdot \mathbf{v}_{s.7_16.8d.6^{\cdot 1}}}{\Omega_s}$	$= \bullet \text{ oplf} \qquad \text{check}_{wE} := \text{ if} \left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK" \right)$
	$^{W}v.E = 0.454$ check _{wE} = "OK"
	$\frac{1}{W_{all.E}} = 0.434$

Single Sided 7/16" sheathing w/ 8d @ 6<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing C_D := 1.6

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 2.382 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

$$T_{all} := HDU4 = 4.565 \cdot kip$$

Allowable tension load

 $\operatorname{check}_{\operatorname{HD}} := \operatorname{if}\left(\frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} > 1.0, "\mathrm{NG"}, "\mathrm{OK"}\right) \qquad \operatorname{ratio} := \frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} = 0.522 \qquad \qquad \operatorname{check}_{\operatorname{HD}} = "\mathrm{OK"}$

 $V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 20 \text{ft} \cdot \left(h_{floor_3} - h_{floor_1}\right) = 14.01 \cdot \text{kip}$

Wind load

 $P_{rf} := 5000lbf = 5 \times 10^3 \cdot lbf$

Total gravity load on wall from forte $P_{rf} = 5 \cdot kip$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s}) \qquad \text{Wal self weight load} \qquad P_{w} = 0.7 \cdot \text{kip}$$
$$M_{res} := \left[(P_{rf} + P_{w}) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \quad \text{Resisting moment (ASD)} \qquad M_{res} = 9.975 \cdot \text{kip} \cdot \text{ft}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

Holdown $T := \frac{max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 29.065 \cdot kip$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

T_{all} := 3CMST12_38 = 27.645⋅kipAllowable tension load

$$check_{HD} := if\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \qquad ratio := \frac{T}{T_{all}} = 1.05$$

$$check_{HD} = "NG"$$
It is less than 5% above-EOR is OK

49 of 104

$$V_{EQ} := V_{story_2} \cdot \frac{483 \text{ ft}^2}{2250 \text{ ft}^2} = 5.898 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

$$V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 17 \text{ft} \cdot (h_{floor_3} - h_{floor_1}) = 11.909 \cdot \text{kip}$$

Wind load

First Segment:

 $w_s := 5ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\begin{split} &\frac{h_{t}}{w_{s}} = 2 & \text{check}_{ratio} \coloneqq \text{if} \left(\frac{h_{t}}{w_{s}} > 3.5, \text{"NG"}, \text{"OK"} \right) & \text{check}_{ratio} \equiv \text{"OK"} \\ &(\text{WSP}) \coloneqq \text{if} \left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}} \right) & \text{Aspect ratio factor} & (\text{WSP}) = 1.0 \\ & \textbf{Overturning Forces} \\ &V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_{s}}{L_{s}} \right) & \text{Wind shear load at top of wall} & V_{rf.w} = 7.15 \cdot \text{kip} \\ &V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_{s}}{L_{s}} \right) & \text{Seismic shear load at top of} & V_{rf.E} = 4.13 \cdot \text{kip} \end{split}$$

$\mathbf{M}_{\mathrm{ot.w}} \coloneqq \mathbf{V}_{\mathrm{rf.w}} \cdot \mathbf{h}_{\mathrm{t}}$	Overturning moment (ASD)	$M_{ot.w} = 71.5 \cdot kip \cdot f$
$M_{ot.E} := V_{rf.E} \cdot h_t$	Overturning moment (ASD)	$M_{at E} = 41.3 \cdot \text{kip} \cdot \text{ff}$

Resisting Forces

 $P_{rf} := 0$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s}) \qquad \text{Wal self weight load} \qquad P_{w} = 0.6 \cdot \text{kip}$$
$$M_{res} := \left[(P_{rf} + P_{w}) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \quad \text{Resisting moment (ASD)} \qquad M_{res} = 0.9 \cdot \text{kip} \cdot \text{ft}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 20.465 \cdot kip$$

$$check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$$
 $check_T = "HD REQ'D"$

 $T_{all} := 3CMST12_{38} = 27.645 \cdot kirAllowable tension load$

$$\operatorname{check}_{\operatorname{HD}} := \operatorname{if}\left(\frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} > 1.0, "\mathrm{NG"}, "\mathrm{OK"}\right) \qquad \operatorname{ratio} := \frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} = 0.74 \qquad \operatorname{check}_{\operatorname{HD}} = "\mathrm{OK"}$$

 $V_{wind} \coloneqq (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 9ft \cdot (h_{floor_3} - h_{floor_1}) = 6.305 \cdot kip$ Wind load

First Segment:

 $w_s := 3.5 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$\frac{h_t}{w_s} = 2.857$ ch	$eck_{ratio} := if\left(\frac{h_t}{w_s} > 3.5, "NG", "OK"\right)$	check _{ratio} = "OK"
(WSP) := if $\left(\frac{h_t}{w_s} < 2.0, 1.0, 1\right)$	$.25 - 0.125 \cdot \frac{h_t}{w_s} $ Aspect ratio factor	(WSP) = 0.9
Overturning Forces		
$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$	Wind shear load at top of wall (ASD)	$V_{rf.w} = 0.63 \cdot kip$
$\mathbf{V}_{rf.E} := \left(0.7 \cdot \mathbf{V}_{EQ} \cdot \frac{\mathbf{w}_{s}}{\mathbf{L}_{s}}\right)$	Seismic shear load at top of wall (ASD)	$V_{rf.E} = 0.4 \cdot kip$
$\mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.w} = 6.3 \cdot kip \cdot ft$
$M_{ot.E} := V_{rf.E} \cdot h_t$	Overturning moment (ASD)	$M_{ot,E} = 4 \cdot kip \cdot ft$

Resisting Forces

$$P_{rf} := 0 = 0.1bf$$

Total gravity load on wall

 $P_{rf} = 0 \cdot kip$

$$\begin{split} \mathbf{P}_{\mathbf{w}} &\coloneqq \mathbf{W}_{ext} \cdot \left(\mathbf{h}_{t}\right) \cdot \left(\mathbf{w}_{s}\right) & \text{Wal self weight load} & \mathbf{P}_{\mathbf{w}} &= 0.42 \cdot \text{kip} \\ \mathbf{M}_{res} &\coloneqq \left[\left(\mathbf{P}_{rf} + \mathbf{P}_{\mathbf{w}}\right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & \mathbf{M}_{res} &= 0.441 \cdot \text{kip} \cdot \text{ft} \end{split}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

Shear Wall Design for Lateral Load in North-South Direction per NDS-SDPWS2015

Second Floor- Shear wall

$$V_{wind} := \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A} \right) \cdot 6 \text{ft} \cdot \left(h_{floor_3} - h_{floor_1} \right) = 4.203 \cdot \text{kip}$$

Wind load

First Segment:

 $w_s := 3ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 3.333 \qquad \text{check}_{ratio} := \text{if}\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} = \text{"OK"}$$
$$(\text{WSP}) := \text{if}\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 0.8$$

Overturning Forces

$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$	Wind shear load at top of wall (ASD)	$V_{rf.w} = 2.52 \cdot kip$
$\mathbf{V}_{rf.E} := \left(0.7 \cdot \mathbf{V}_{EQ} \cdot \frac{\mathbf{w}_{s}}{\mathbf{L}_{s}}\right)$	Seismic shear load at top of wall (ASD)	V _{rf.E} = 0.68·kip
$\mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.w} = 25.2 \cdot kip \cdot f$
$M_{ot.E} := V_{rf.E} \cdot h_t$	Overturning moment (ASD)	$M_{ot.E} = 6.8 \cdot kip \cdot ft$

Resisting Forces

 $P_{rf} := 0 = 0 \cdot lbf$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

$\mathbf{P}_{\mathbf{W}} := \mathbf{W}_{\mathbf{ext}} \cdot (\mathbf{h}_{\mathbf{t}}) \cdot (\mathbf{w}_{\mathbf{s}})$	Wall self weight load	$P_{W} = 0.36 \cdot kip$
$\mathbf{M}_{\text{res}} \coloneqq \left[\left(\mathbf{P}_{\text{rf}} + \mathbf{P}_{\text{w}} \right) \cdot \frac{\mathbf{w}_{\text{s}}}{2} \right] \cdot 0.6$	Resisting moment (ASD)	$M_{res} = 0.324 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2	sides
$\Omega_{s} := 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} := 2.5$	Overstrength factor
$w_{v.w} := \frac{V_{rf.w}}{w_s} = 841 \cdot plf$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 228 \cdot plf$	Seismic shear flow
$\mathbf{w}_{\text{all.w}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{\text{w.7_16.8d.4}}}{\Omega_{\text{s}}}$	$\frac{n}{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{w_{$
	$\frac{w_{v.w}}{w_{all.w}} = 1.029 \qquad \text{check}_{wv} = "NG"$

$$w_{all,E} := \frac{(WSP) \cdot v_{s.7_16.8d.4} \cdot n}{\Omega_s} = 583.3 \cdot plf \quad check_{wE} := if \left(\frac{w_{v.E}}{w_{all,E}} > 1.0, "NG", "OK"\right)$$
$$\frac{w_{v.E}}{w_{all,E}} = 0.391 \quad check_{wE} = "OK"$$
Double Sided 7/16" sheathing w/ 8d @ 4" O.C. Panel Edges @ 12" O.C.
Interior Supports (ref. table 4.3A)

Holdown

$$\Gamma := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 8.298 \cdot kip$$

$$check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \quad check_T = "HD REQ'D"$$

$$T_{all} := 2MST48 = 8.4 \text{ kip}$$
 Allowable tension load

$$check_{HD} := if\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \qquad ratio := \frac{T}{T_{all}} = 0.988$$

$$check_{HD} = "OK"$$

$$V_{EQ} := V_{story_2} \cdot \frac{215 \text{ft}^2}{2250 \text{ft}^2} = 2.626 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

$$V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 8.5ft \cdot (h_{floor_3} - h_{floor_1}) = 5.954 \cdot kip$$

Wind load

First Segment:

 $w_s := 3.5 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\begin{array}{ll} \displaystyle \frac{h_{t}}{w_{s}} = 2.857 & \operatorname{check}_{ratio} \coloneqq \operatorname{if} \left(\frac{h_{t}}{w_{s}} > 3.5, "NG", "OK" \right) & \operatorname{check}_{ratio} \equiv "OK" \\ \displaystyle (WSP) \coloneqq \operatorname{if} \left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}} \right) & \operatorname{Aspect ratio factor} & (WSP) = 0.9 \\ \hline \\ \displaystyle \textit{Overturning Forces} \\ \displaystyle V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_{s}}{L_{s}} \right) & \text{Wind shear load at top of wall} & V_{rf.w} \equiv 3.57 \cdot \operatorname{kip} \\ \displaystyle V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_{s}}{L_{s}} \right) & \operatorname{Seismic shear load at top of} \\ \displaystyle wall (ASD) & V_{rf.E} \equiv 1.84 \cdot \operatorname{kip} \\ \displaystyle M_{ot.w} \coloneqq V_{rf.w} \cdot h_{t} & \text{Overturning moment (ASD)} & M_{ot.w} \equiv 35.7 \cdot \operatorname{kip} \cdot \operatorname{ft} \\ \displaystyle M_{ot.E} \coloneqq V_{rf.E} \cdot h_{t} & \text{Overturning moment (ASD)} & M_{ot.E} \equiv 18.4 \cdot \operatorname{kip} \cdot \operatorname{ft} \\ \hline \end{array}$$

Resisting Forces

$$P_{rf} := \left(DL_{roof} \cdot \frac{19ft}{2} \cdot w_s + DL_{floor} \cdot \frac{19ft}{2} \cdot w_s \right)$$

Total gravity load on wall

 $P_{rf} = 0.997 \cdot kip$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$n \coloneqq 2$	sides
$\Omega_{\rm s} \coloneqq 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} := 2.5$	Overstrength factor
$\mathbf{w}_{\mathbf{V}.\mathbf{W}} \coloneqq \frac{\mathbf{V}_{\mathrm{rf.W}}}{\mathbf{w}_{\mathrm{S}}} = 1021 \cdot \mathrm{plf}$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 525 \cdot plf$	Seismic shear flow
$\mathbf{w}_{\text{all.w}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{\text{w.7_16.8d.3}}}{\Omega_{\text{s}}}$	$\frac{n}{w_{\text{UW}}} = 1125 \text{ pl} \text{ check}_{\text{WV}} := \text{ if} \left(\frac{w_{\text{UW}}}{w_{\text{all.W}}} > 1.0, "\text{NG"}, "\text{OK"} \right) \frac{\text{It is less than 5\%}}{\text{above-EOR is OK}}$
	$\frac{W_{V.W}}{W_{all.W}} = 0.907 \qquad \text{check}_{WV} = "OK"$

$$\mathbf{w_{all.E}} \coloneqq \frac{(WSP) \cdot \mathbf{v_{s.7_16.8d.3} \cdot n}}{\Omega_{s}} = 803.6 \cdot \text{plf} \quad \text{check}_{WE} \coloneqq \text{if}\left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, "NG", "OK"\right)$$

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 12.703 \cdot kip$$

check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") check_T = "HD REQ'D"

 $T_{all} := 4MSTC48B3 = 15.9 \text{ kip}$ Allowable tension load

$$\operatorname{check}_{\operatorname{HD}} := \operatorname{if}\left(\frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} > 1.0, "\mathrm{NG"}, "\mathrm{OK"}\right) \qquad \operatorname{ratio} := \frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} = 0.799 \qquad \operatorname{check}_{\operatorname{HD}} = "\mathrm{OK"}$$

 $V_{wind} \coloneqq (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot (16ft + 8in) \cdot (h_{floor_3} - h_{floor_1}) = 11.675 \cdot ki_1$ Wind load

First Segment:

 $w_{s} := 7.5 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_{t}}{w_{s}} = 1.333 \qquad \text{check}_{ratio} \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} \equiv \text{"OK"}$$

$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_{t}}{w_{s}} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_{t}}{w_{s}}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$

$$Overturning Forces$$

$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s} \right)$	Wind shear load at top of wall (ASD)	$V_{rf.w} = 7.01 \cdot kip$
$\mathbf{V}_{rf.E} := \left(0.7 \cdot \mathbf{V}_{EQ} \cdot \frac{\mathbf{w}_{s}}{\mathbf{L}_{s}}\right)$	Seismic shear load at top of wall (ASD)	V _{rf.E} = 7.8·kip
$\mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.w} = 70.1 \cdot kip \cdot ft$
$M_{ot.E} := V_{rf.E} \cdot h_t$	Overturning moment (ASD)	$M_{ot.E} = 78 \cdot kip \cdot ft$

Resisting Forces

$$P_{rf} := \left(DL_{roof} \cdot \frac{13ft}{2} \cdot w_s + DL_{floor} \cdot \frac{13ft}{2} \cdot w_s \right)$$

Total gravity load on wall

 $P_{rf} = 1.463 \cdot kip$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s}) \qquad \text{Wal self weight load} \qquad P_{w} = 0.9 \cdot \text{kip}$$
$$M_{res} := \left[(P_{rf} + P_{w}) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \quad \text{Resisting moment (ASD)} \qquad M_{res} = 5.316 \cdot \text{kip} \cdot \text{ft}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$\mathbf{n} := 2$	sides
$\Omega_{s} := 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} := 2.5$	Overstrength factor
$w_{v.w} := \frac{V_{rf.w}}{w_s} = 934 \cdot plf$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 1040 \cdot plf$	Seismic shear flow
$\mathbf{w}_{all.w} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{w.7_16.8d.2}}{\Omega_{s}}$	$\frac{\mathbf{n}}{\mathbf{m}} = 1640 \cdot \mathbf{pl} \text{ check}_{WV} := \text{ if} \left(\frac{\mathbf{w}_{V.W}}{\mathbf{w}_{all.W}} > 1.0, "NG", "OK" \right)$
	$\frac{W_{V.W}}{W_{all W}} = 0.57 \qquad \text{check}_{WV} = "OK"$
	a11. vv
$\mathbf{w}_{all.E} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{s.7_16.8d.2^{\cdot r}}}{\Omega_s}$	$\frac{1}{2} = 1170 \text{ plf} \text{check}_{wE} \coloneqq \text{if}\left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{v.E}}{W_{v.E}} = 0.888$ check _{wE} = "OK"
	^w all.E

Double Sided 7/16" sheathing w/ 8d @ 2<u>" O.C.</u> Panel Edges @ 12" O.C.

Interior Supports (ref. table 4.3A)

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 25.279 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

$$T_{all} := 4MST60 = 24.94 \cdot kip$$
 Allowable tension load

$$check_{HD} := if\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$

$$ratio := \frac{T}{T_{all}} = 1.014$$

$$check_{HD} = "NG"$$
It is less than 5%
above-EOR is OK

69 of 104

$$V_{EQ} := V_{story_2} \cdot \frac{1230 \text{ft}^2}{2250 \text{ft}^2} = 15.021 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

 $V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot (16ft + 8in) \cdot \left(h_{floor_{3}} - h_{floor_{1}}\right) = 11.675 \cdot kip$ Wind load

First Segment:

 $w_s := 6ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.667 \qquad \text{check}_{ratio} := \text{if}\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} = \text{"OK"}$$
$$(\text{WSP}) := \text{if}\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$

Overturning Forces

$$V_{rf.w} := \begin{pmatrix} 0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s} \end{pmatrix} \qquad \text{Wind shear load at top of wall} \qquad V_{rf.w} = 3.11 \cdot \text{kip}$$
$$V_{rf.E} := \begin{pmatrix} 0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s} \end{pmatrix} \qquad \text{Seismic shear load at top of} \qquad V_{rf.E} = 4.67 \cdot \text{kip}$$

$M_{ot.w} := V_{rf.w} \cdot h_t$	Overturning moment (ASD)	$M_{ot.w} = 31.1 \cdot kip \cdot ft$
$\mathbf{M}_{ot.E} \coloneqq \mathbf{V}_{rf.E} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot F} = 46.7 \cdot kip \cdot ft$

Resisting Forces

$$P_{rf} := DL_{roof} \cdot \frac{18ft}{2} \cdot w_s + DL_{floor} \cdot \frac{18ft}{2} \cdot w_s$$

Total gravity load on wall

 $P_{rf} = 1.62 \cdot kip$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$
 Wall self weight load
$$P_{w} = 0.72 \cdot kip$$
$$M_{res} := \left[(P_{rf} + P_{w}) \cdot \frac{w_{s}}{2} \right] \cdot 0.6$$
 Resisting moment (ASD)
$$M_{res} = 4.212 \cdot kip \cdot f$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2	sides
$\Omega_{\rm s} := 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} := 2.5$	Overstrength factor
$w_{v.w} := \frac{V_{rf.w}}{w_s} = 519 \cdot plf$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 779 \cdot plf$	Seismic shear flow
$$w_{all.w} := \frac{(WSP) \cdot v_{w.7_16.8d.3} \cdot n}{\Omega_{s}} = 1260 \cdot pl \text{ check}_{WV} := \text{ if} \left(\frac{w_{V.W}}{w_{all.w}} > 1.0, "NG", "OK"\right)$$
$$\frac{w_{V.W}}{w_{all.w}} = 0.412 \quad \text{check}_{WV} = "OK"$$
$$w_{all.E} := \frac{(WSP) \cdot v_{s.7_16.8d.3} \cdot n}{\Omega_{s}} = 900 \cdot plf \quad \text{check}_{WE} := \text{ if} \left(\frac{w_{V.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$$
$$\frac{w_{V.E}}{w_{all.E}} = 0.865 \quad \text{check}_{WE} = "OK"$$

Double Sided 7/16" sheathing w/ 8d @ 3<u>" **O.C.**</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing C_D := 1.6

Holdown

$$T \coloneqq \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 18.77 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{all} := 3MST60 = 18.705 \cdot kip$ Allowable tension load

 $check_{HD} := if\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \qquad ratio := \frac{T}{T_{all}} = 1.003 \qquad \frac{check_{HD} = "NG"}{It is less than 5\%}$ above-EOR is OK

$$V_{EQ} := V_{story_2} \cdot \frac{30 \text{ft}^2}{2250 \text{ft}^2} = 0.366 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

 $V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot (3 \text{ ft}) \cdot \left(h_{floor_3} - h_{floor_1}\right) = 2.102 \cdot \text{kip}$ Wind load

First Segment:

 $w_{s} := 9.5 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.053 \qquad \text{check}_{ratio} \coloneqq \text{if}\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right) \qquad \text{check}_{ratio} \equiv \text{"OK"}$$
$$(\text{WSP}) \coloneqq \text{if}\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$
$$Overturning Forces$$

$$\begin{split} & V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s} \right) & \text{Wind shear load at top of wall} & V_{rf.w} = 1.26 \cdot \text{kip} \\ & V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s} \right) & \text{Seismic shear load at top of} & V_{rf.E} = 0.26 \cdot \text{kip} \end{split}$$

$\mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.w} = 12.6 \cdot kip \cdot f$
$\mathbf{M}_{ot.E} \coloneqq \mathbf{V}_{rf.E} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.E} = 2.6 \cdot kip \cdot ft$

Resisting Forces

 $P_{rf} := 0$

Total gravity load on wall

 $P_{rf} = 0 \cdot kip$

$\mathbf{P}_{\mathbf{W}} := \mathbf{W}_{\mathbf{ext}} \cdot (\mathbf{h}_{t}) \cdot (\mathbf{w}_{s})$	Wall self weight load	$P_{W} = 1.14 \cdot kip$
$\mathbf{M}_{\text{res}} \coloneqq \left[\left(\mathbf{P}_{\text{rf}} + \mathbf{P}_{\text{w}} \right) \cdot \frac{\mathbf{w}_{\text{s}}}{2} \right] \cdot 0.6$	Resisting moment (ASD)	$M_{res} = 3.249 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1	sides
$\Omega_{\rm s} \coloneqq 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} := 2.5$	Overstrength factor
$w_{v.w} := \frac{V_{rf.w}}{w_s} = 133 \cdot plf$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 27 \cdot plf$	Seismic shear flow
$w_{all.w} := \frac{(WSP) \cdot v_{w.7_{16.8d.6}}}{\Omega_s}$	$\frac{\mathbf{n}}{\mathbf{m}} = 335 \cdot \text{plf} \text{ check}_{WV} := \text{if}\left(\frac{\mathbf{w}_{V.W}}{\mathbf{w}_{all.W}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{V.W}}{W_{V.W}} = 0.396 \qquad \text{check}_{WV} = "OK"$
	"all.w
$w_{all.E} := \frac{(WSP) \cdot v_{s.7_16.8d.6}}{\Omega_s}$	$= 240 \cdot \text{plf} \qquad \text{check}_{wE} := \text{if}\left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{v.E}}{W_{v.E}} = 0.112$ check _{wE} = "OK"
	wall.E

Single Sided 7/16" sheathing w/ 8d @ 6<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D := 1.6$

Holdown

$$\Gamma := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 0.985 \cdot kip$$

$$check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") \quad check_T = "HD REQ'D"$$

$$T_{all} := MST37 = 2.705 \cdot kip$$
 Allowable tension load

$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$
 ratio := $\frac{T}{T_{all}} = 0.364$ $\operatorname{check}_{HD} = "OK"$

Shear Wall Design for Lateral Load in East-West Direction per NDS-SDPWS2015

Third Floor- Shear wall

$$V_{EQ} := V_{story_3} \cdot \frac{907 \text{ft}^2}{2250 \text{ft}^2} = 6.075 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

$$V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 24ft \cdot (h_{floor_3} - h_{floor_2}) = 8.772 \cdot kip$$

Wind load

 $w_s := 16ft + 8in$

Aspect Ratio (Blocked Shear Wall)

$$\begin{split} \frac{h_t}{w_s} &= 0.54 & \text{check}_{ratio} \coloneqq \text{if} \left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"} \right) & \text{check}_{ratio} \equiv \text{"OK"} \\ (\text{WSP}) &\coloneqq \text{if} \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s} \right) & \text{Aspect ratio factor} & (\text{WSP}) = 1.0 \\ \hline \textbf{Overturning Forces} \\ V_{rf.w} &\coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s} \right) & \text{Wind shear load at top of wall} & V_{rf.w} = 2.41 \cdot \text{kip} \\ V_{rf.E} &\coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s} \right) & \text{Seismic shear load at top of} & V_{rf.E} = 1.95 \cdot \text{kip} \end{split}$$

$M_{ot.w} := V_{rf.w} \cdot h_t$	Overturning moment (ASD)	$M_{ot.w} = 21.7 \cdot kip \cdot f$
$\mathbf{M}_{ot.E} \coloneqq \mathbf{V}_{rf.E} \cdot \mathbf{h}_t$	Overturning moment (ASD)	$M_{ot.E} = 17.5 \cdot kip \cdot ft$

Resisting Forces

 $P_{rf} := 0$

Total gravity load on wall

 $P_{rf} = 0 \cdot kip$

$$\begin{split} \mathbf{P}_{w} &\coloneqq \mathbf{W}_{ext} \cdot \left(\mathbf{h}_{t}\right) \cdot \left(\mathbf{w}_{s}\right) & \text{Wal self weight load} & \mathbf{P}_{w} &= 1.8 \cdot \text{kip} \\ \mathbf{M}_{res} &\coloneqq \left[\left(\mathbf{P}_{rf} + \mathbf{P}_{w}\right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & \mathbf{M}_{res} &= 9 \cdot \text{kip} \cdot \text{ft} \end{split}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

Single Sided 7/16" sheathing w/ 8d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing C_D := 1.6

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 2.087 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{all} := MST37 = 2.705 \cdot kip$ Allowable tension load

 $\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$ ratio := $\frac{T}{T_{all}} = 0.772$ $\operatorname{check}_{HD} = "OK"$

$$V_{EQ} := V_{story_3} \cdot \frac{925 \text{ ft}^2}{2250 \text{ ft}^2} = 6.195 \cdot \text{kip}$$

$$V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 26.5 \text{ft} \cdot (h_{floor_3} - h_{floor_2}) = 9.685 \cdot \text{kip}$$

$$\begin{split} M_{ot.w} &\coloneqq V_{rf.w} \cdot h_t & \text{Overturning moment (ASD)} & M_{ot.w} = 52.3 \cdot \text{kip-ft} \\ M_{ot.E} &\coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} & M_{ot.E} = 39 \cdot \text{kip-ft} \end{split}$$

Resisting Forces

$$\begin{array}{ll} P_{rf} \coloneqq 0 = 0 \cdot lbf \\ & & & & & \\ P_{rf} = 0 \cdot kip \\ P_{w} \coloneqq W_{ext} \cdot \left(h_{t}\right) \cdot \left(w_{s}\right) \\ & & & & & \\ Wal \ self \ weight load \\ & & P_{w} = 0.486 \cdot kip \end{array}$$

$$M_{res} \coloneqq \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \text{ Resisting moment (ASD)} \qquad \qquad M_{res} = 0.656 \cdot \text{kip} \cdot \text{fr}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$\begin{array}{ll} \mathbf{n}:=1 & \text{sides} \\ \Omega_{8}:=2.0 & (\text{ASD shear capacity factor ref. section 4.3.3}) \\ \Omega_{0}:=2.5 & \text{Overstrength factor} \\ w_{v.w}:=\frac{V_{rf.w}}{w_{s}}=1291 \cdot \text{plf} & \text{Wind shear flow} \\ w_{v.E}:=\frac{V_{rf.E}}{w_{s}}=964 \cdot \text{plf} & \text{Seismic shear flow} \\ w_{all.w}:=\frac{(\text{WSP}) \cdot v_{w.7_16.8d.2^{\cdot n}}{\Omega_{s}}=820 \cdot \text{plf} & \text{check}_{wv}:=\text{if}\left(\frac{w_{v.w}}{w_{all.w}}>1.0, \text{"NG"}, \text{"OK"}\right) \\ & \frac{w_{v.w}}{w_{all.w}}=1.575 & \text{check}_{wv}=\text{"NG"} \\ w_{all.E}:=\frac{(\text{WSP}) \cdot v_{s.7_16.8d.6^{\cdot n}}{\Omega_{s}}=240 \cdot \text{plf} & \text{check}_{wE}:=\text{if}\left(\frac{w_{v.E}}{w_{all.E}}>1.0, \text{"NG"}, \text{"OK"}\right) \\ \end{array}$$

 $check_{wE} = "NG"$

Single Sided 7/16" sheathing w/ 8d @ 6<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 21.537 \cdot kip$$

check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D") check_T = "HD REQ'D"

 $T_{all} := MST60 = 6.235 \cdot kip$

Allowable tension load

$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$
 ratio := $\frac{T}{T_{all}} = 3.454$ $\operatorname{check}_{HD} = "NG"$

 $V_{wind} \coloneqq (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 9 \text{ft} \cdot (h_{floor_3} - h_{floor_2}) = 3.289 \cdot \text{kip}$

Wind load

 $P_{rf} := 0$

Total gravity load on wall

 $P_{rf} = 0 \cdot kip$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s}) \qquad \text{Wal self weight load} \qquad P_{w} = 0.378 \cdot \text{kip}$$
$$M_{res} := \left[(P_{rf} + P_{w}) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \quad \text{Resisting moment (ASD)} \qquad M_{res} = 0.397 \cdot \text{kip} \cdot \text{ft}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$\mathbf{n} := 1$	sides
$\Omega_{\rm s} \coloneqq 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} := 2.5$	Overstrength factor
$w_{v.w} := \frac{V_{rf.w}}{w_s} = 94 \cdot plf$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 58 \cdot plf$	Seismic shear flow
$\mathbf{w}_{all.w} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{w.7_16.8d.6}}{\Omega_{s}}$	$\frac{v^{n}}{w} = 311.1 \cdot \text{plf} \qquad \text{check}_{WV} \coloneqq \text{if}\left(\frac{w_{V,W}}{w_{all,W}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{V.W}}{W} = 0.302$ check _{WV} = "OK"
	^w all.w
$\mathbf{w}_{all,E} := \frac{(WSP) \cdot \mathbf{v}_{s.7_16.8d.6^{+1}}}{\Omega_s}$	$\frac{n}{m} = 222.9 \text{ plf} \text{check}_{wE} := \text{if}\left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{v.E}}{W_{v.E}} = 0.26$ check _{wE} = "OK"
	^w all.E

Single Sided 7/16" sheathing w/ 8d @ 6<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing
$$C_D := 1.6$$
 $t_{sp} := 1.5in$ Sill plate thickness $dia_a := 16d$ Nail Size $sp_a := 8in$ Nail spacing

$$\begin{split} & Z_{ll} \coloneqq v_n \cdot C_D = 0.226 \cdot \text{kip} & \text{Allowable load parallel to grain (ref. NDS table 12)} \\ & V_{sp} \coloneqq w_{v.w} \cdot \text{sp}_a = 0.063 \cdot \text{kip} & \text{Shear load to each nail} \\ & \text{Check}_a \coloneqq \text{if} \left(V_{sp} > Z_{ll}, \text{"NG"}, \text{"OK"} \right) & \text{ratio}_a \coloneqq \frac{V_{sp}}{Z_{ll}} = 0.278 & \text{Check}_a = \text{"OK} \\ & \text{Use 16d Nail at 8"o.c. Staggered} \end{split}$$

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 1.193 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{all} := MST37 = 2.705 \cdot kip$

Allowable tension load

 $\operatorname{check}_{\operatorname{HD}} := \operatorname{if}\left(\frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} > 1.0, "\mathrm{NG"}, "\mathrm{OK"}\right) \qquad \operatorname{ratio} := \frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} = 0.441 \qquad \operatorname{check}_{\operatorname{HD}} = "\mathrm{OK"}$

Shear Wall Design for Lateral Load in North-South Direction per NDS-SDPWS2015

Third Floor- Shear wall

$$V_{EQ} := V_{story_3} \cdot \frac{160 \text{ft}^2}{2250 \text{ft}^2} = 1.072 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

 $V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 4ft \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.462 \cdot kip$

89 of 104

Wind load

Resisting Forces

$$P_{rf} := DL_{roof} \cdot \frac{20\pi}{2} \cdot w_s$$

200

Total gravity load on wall

 $P_{rf} = 0.45 \cdot kip$

$$\begin{split} \mathbf{P}_{\mathbf{w}} &\coloneqq \mathbf{W}_{\mathbf{ext}} \cdot \left(\mathbf{h}_{t}\right) \cdot \left(\mathbf{w}_{s}\right) & \text{Wal self weight load} & \mathbf{P}_{\mathbf{w}} = 0.324 \cdot \text{kip} \\ \mathbf{M}_{res} &\coloneqq \left[\left(\mathbf{P}_{rf} + \mathbf{P}_{w}\right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & \mathbf{M}_{res} = 0.697 \cdot \text{kip} \cdot \text{ft} \end{split}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1	sides
$\Omega_{s} \coloneqq 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} := 2.5$	Overstrength factor
$w_{v.w} \coloneqq \frac{V_{rf.w}}{w_s} = 84 \cdot plf$	Wind shear flow
$w_{v.E} := \frac{V_{rf.E}}{w_s} = 71 \cdot plf$	Seismic shear flow
$\mathbf{w}_{all.w} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{\text{W.7_16.8d.6}}}{\Omega_{\text{S}}}$	$\frac{\mathbf{n}}{\mathbf{m}} = 293.1 \cdot \text{plf} \qquad \text{check}_{WV} := \text{if}\left(\frac{\mathbf{w}_{V.W}}{\mathbf{w}_{all.W}} > 1.0, "NG", "OK"\right)$
	$\frac{w_{v.w}}{w_{all.w}} = 0.285$ check _{wv} = "OK"
$w_{all.E} \coloneqq \frac{(WSP) \cdot v_{s.7_16.8d.6^{\cdot 1}}}{\Omega_s}$	= 210 · plf check _{wE} := if $\left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$

 $check_{wE} = "OK"$

Single Sided 7/16" sheathing w/ 8d @ 6<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

$$\begin{aligned} \text{Holdown} \\ T &:= \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 1.375 \cdot kip \\ & \text{check}_T := \text{if}(T > 150 \text{lbf}, "\text{HD REQ'D"}, "NOT REQ'D") \quad \text{check}_T = "\text{HD REQ'D"} \\ T_{all} &:= \text{MST37} = 2.705 \cdot kip \quad \text{Allowable tension load} \\ & \text{check}_{\text{HD}} := \text{if}\left(\frac{T}{T_{all}} > 1.0, "\text{NG"}, "\text{OK"}\right) \quad \text{ratio} := \frac{T}{T_{all}} = 0.508 \quad \text{check}_{\text{HD}} = "\text{OK"} \\ T_{all} &:= \text{DTT2Z} = 2.145 \cdot kip \quad \text{Allowable tension load} \\ & \text{check}_{\text{HD}} := \text{if}\left(\frac{T}{T_{all}} > 1.0, "\text{NG"}, "\text{OK"}\right) \quad \text{ratio} := \frac{T}{T_{all}} = 0.641 \quad \text{check}_{\text{HD}} = "\text{OK"} \end{aligned}$$

$$V_{EQ} := V_{story_3} \cdot \frac{1100 \text{ft}^2}{2250 \text{ft}^2} = 7.367 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

$$V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 20 \text{ft} \cdot (h_{floor_3} - h_{floor_2}) = 7.31 \cdot \text{kip}$$

Wind load

Resisting Forces

D	DI	13ft	T 7
rrf ·-	DL _{roof} .	2	۳s

Total gravity load on wall

$$P_{rf} = 0.731 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s}) \qquad \text{Wal self weight load} \qquad P_{w} = 0.81 \cdot \text{kip}$$
$$M_{res} := \left[(P_{rf} + P_{w}) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \quad \text{Resisting moment (ASD)} \qquad M_{res} = 3.468 \cdot \text{kip} \cdot \text{ft}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2	sides
$\Omega_{\rm s} := 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} \coloneqq 2.5$	Overstrength factor
$\mathbf{w}_{\mathbf{V},\mathbf{W}} \coloneqq \frac{\mathbf{V}_{\mathbf{rf},\mathbf{W}}}{\mathbf{W}_{\mathbf{S}}} = 585 \cdot \text{plf}$	Wind shear flow
$\mathbf{w}_{\mathbf{v}.\mathbf{E}} \coloneqq \frac{\mathbf{V}_{\mathbf{rf}.\mathbf{E}}}{\mathbf{w}_{\mathbf{S}}} = 688 \cdot \mathbf{plf}$	Seismic shear flow
$\mathbf{w}_{all.w} := \frac{(WSP) \cdot \mathbf{v}_{w.7_16.8d.4}}{\Omega_{s}}$	$\frac{\mathbf{n}}{\mathbf{m}} = 980 \cdot \text{plf} \qquad \text{check}_{WV} \coloneqq \text{if}\left(\frac{W_{V,W}}{W_{all,W}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{V.W}}{W_{all.W}} = 0.597$ check _{WV} = "OK"
$\mathbf{w}_{all.E} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{s.7_16.8d.4^{\cdot 1}}}{\Omega_s}$	$= 700 \cdot \text{plf} \qquad \text{check}_{wE} \coloneqq \text{if}\left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$
	$\frac{W_{v.E}}{W} = 0.982$ check _{wE} = "OK"
	^w all.E
Double Sided 7/16" she Interior Supports (ref. tak	athing w/ 8d @ 4 <u>" O.C.</u> Panel Edges @ 12" O.C. ble 4.3A)

Bottom Plate Nailing $C_D := 1.6$ $t_{sp} := 1.5in$ Sill plate thickness $dia_a := 16d$ Nail Size $sp_a := 4.5in$ Nail spacing $Z_{11} := v_n \cdot C_D = 0.226 \cdot kip$ Allowable load parallel to grain (ref. NDS table 12)

$$V_{sp} := w_{V,W} \cdot sp_a = 0.219 \cdot kip \qquad \text{Shear load to each nail}$$

$$Check_a := if \left(V_{sp} > Z_{ll}, "NG", "OK" \right) \qquad ratio_a := \frac{V_{sp}}{Z_{ll}} = 0.972 \qquad \text{Check}_a = "OK"$$

$$Use 16d \text{ Nail at 4.5" o.c. Staggered}$$

Holdown

$$T := \frac{max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 15.009 \cdot kip$$

$$check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$$
 $check_T = "HD REQ'D"$

$$\operatorname{check}_{\operatorname{HD}} := \operatorname{if}\left(\frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} > 1.0, "\mathrm{NG"}, "\mathrm{OK"}\right) \qquad \operatorname{ratio} := \frac{\mathrm{T}}{\mathrm{T}_{\operatorname{all}}} = 0.802 \qquad \operatorname{check}_{\operatorname{HD}} = "\mathrm{OK"}$$

 $V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 17 \text{ft} \cdot \left(h_{floor_{3}} - h_{floor_{2}}\right) = 6.213 \cdot \text{kip}$ Wind load

Resisting Forces

$$P_{rf} := DL_{roof} \cdot \frac{17ft + 9in}{2} \cdot w_s$$

Total gravity load on wall

$$P_{rf} = 0.799 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s}) \qquad \text{Wal self weight load} \qquad P_{w} = 0.648 \cdot \text{kip}$$
$$M_{res} := \left[(P_{rf} + P_{w}) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \quad \text{Resisting moment (ASD)} \qquad M_{res} = 2.604 \cdot \text{kip} \cdot f^{2}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1	sides
$\Omega_{s} := 2.0$	(ASD shear capacity factor ref. section 4.3.3)
$\Omega_{0} := 2.5$	Overstrength factor
$w_{v.w} := \frac{V_{rf.w}}{w_s} = 273 \cdot plf$	Wind shear flow

$$w_{v.E} := \frac{V_{rf.E}}{w_s} = 309 \cdot plf$$
 Seismic shear flow

$$w_{all.w} := \frac{(WSP) \cdot v_{w.7_16.8d.4} \cdot n}{\Omega_{s}} = 490 \cdot plf \qquad check_{WV} := if \left(\frac{w_{v.W}}{w_{all.w}} > 1.0, "NG", "OK"\right)$$
$$\frac{w_{v.W}}{w_{all.w}} = 0.557 \qquad check_{WV} = "OK"$$

$$w_{all.E} := \frac{(WSP) \cdot v_{s.7_16.8d.4} \cdot n}{\Omega_s} = 350 \cdot plf \qquad check_{wE} := if \left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$$
$$\frac{w_{v.E}}{w_{all.E}} = 0.882 \qquad check_{wE} = "OK"$$

Single Sided 7/16" sheathing w/ 8d @ 4<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing C_D := 1.6

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 6.512 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

$$T_{all} := MST60 = 6.235 \cdot kip$$
 Allowable tension load

$$check_{HD} := if\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$

$$ratio := \frac{T}{T_{all}} = 1.045$$

$$\frac{check_{HD} = "NG"}{It is less than 5\%}$$

$$above-EOR is OK$$

$$V_{EQ} := V_{story_3} \cdot \frac{20ft^2}{2250ft^2} = 0.134 \cdot kip$$

Tributary shear on the wall per plan dimensions

 $V_{wind} \coloneqq (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 4.5 \text{ft} \cdot (h_{floor_3} - h_{floor_2}) = 1.645 \cdot \text{kip}$

Wind load

JOB #: 22-112

S105

22-112 3804 House

Roof				
Member Name	Results	Current Solution	Comments	
(Loading Only) Roof Truss 1	Passed	1 piece(s) 11 7/8" TJI ® 230 @ 16" OC		
(Loading Only) Roof Truss 2	Passed	1 piece(s) 11 7/8" TJI ® 230 @ 16" OC		
(Loading Only) Roof Truss 3	Failed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC	Left cantilever exceeds the maximum braced cantilever length of 5'.	
Roof Header 1	Passed	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam		
Roof Header 2	Passed	1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam		
Roof Header 3	Passed	1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam		
Roof Header 4	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam		
Roof Header 5	Passed	2 piece(s) 2 x 6 DF No.2		
Roof Header 6	Passed	2 piece(s) 2 x 8 DF No.2		
Roof Beam 1	Passed	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL		
Roof Post 1	Passed	1 piece(s) 6 x 6 DF No.2		
Roof Wall 1	Passed	1 piece(s) 2 x 4 DF No.2 @ 16" OC		
Roof Wall 2	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC		

2/6/2024 11:07:11 PM UTC ForteWEB v3.6 File Name: 22-112 3804 House S106

Upper Floor			
Member Name	Results	Current Solution	Comments
(Loading Only) Upper Truss 1	Passed	1 piece(s) 11 7/8" TJI ® 230 @ 16" OC	
(Loading Only) Upper Truss 2	Passed	1 piece(s) 11 7/8" TJI ® 230 @ 16" OC	
(Loading Only) Upper Truss 3	Passed	1 piece(s) 14" TJI ® 110 @ 16" OC	
(Loading Only) Upper Truss 4	Passed	1 piece(s) 11 7/8" TJI ® 230 @ 16" OC	
(Loading Only) Upper Truss 5	Passed	1 piece(s) 2 x 12 DF No.2 @ 24" OC	
(Loading Only) Upper Truss 6	Passed	1 piece(s) 2 x 12 DF No.2 @ 24" OC	
(Loading Only) Upper Truss 7	Passed	1 piece(s) 2 x 12 DF No.2 @ 24" OC	
(Loading Only) Upper Truss 8	Passed	1 piece(s) 11 7/8" TJI ® 360 @ 16" OC	
(Loading Only) Upper Truss 9	Passed	1 piece(s) 2 x 12 DF No.2 @ 16" OC	
(Loading Only) Upper Joist 10	Passed	1 piece(s) 2 x 8 DF No.2 @ 16" OC	
Upper Beam 1	Passed	1 piece(s) 6 x 10 DF No.2	
Upper Beam 2	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam	
Upper Beam 3	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam	
Upper Beam 4	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam	
Upper Beam 5	Passed	1 piece(s) W12X53 (A992) ASTM Steel	
Upper Beam 6	Passed	1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam	
Upper Beam 7	Passed	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam	
Upper Beam 8	Passed	1 piece(s) W10X39 (A992) ASTM Steel	
Upper Beam 9	Failed	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	Left cantilever exceeds the maximum braced cantilever length of 7'.
Upper Beam 10	Failed	1 piece(s) 5 1/2" x 12" 24F-V8 DF Glulam	An excessive uplift of -5111 lbs at support located at 9' 1" failed this product.
Upper Header 1	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam	
Upper Header 3	Passed	2 piece(s) 2 x 6 DF No.2	
Upper Header 4	Passed	1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam	
Upper Header 5	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Upper Header 6	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Upper Header 7	Passed	1 piece(s) 6 x 10 DF No.2	
Upper Header 8	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam	
Upper Header 9	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam	
Upper Header 10	Passed	2 piece(s) 2 x 10 DF No.2	
Upper Wall 1	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC	
Upper Wall 2	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC	
Upper Post 1	Passed	1 piece(s) 6 x 8 DF No.2	
Upper Post 2	Failed	1 piece(s) 4 x 8 DF No.2	
Upper Post 3	Passed	1 piece(s) 4 x 6 DF No.2	
Upper Post 4	Passed	1 piece(s) 6 x 6 DF No.2	

Allen Rishel	
NKH Engineering	
(206) 641-1/33	
allen@nknengineering.com	

Job Notes

Main							
Member Name	Results	Current Solution	Comments				
(Loading Only) Main Truss 1	Passed	1 piece(s) 11 7/8" TJI ® 230 @ 16" OC					
(Loading Only) Main Truss 2	Passed	1 piece(s) 11 7/8" TJI ® 230 @ 16" OC					
(Loading Only) Main Truss 3-2	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC					
(Loading Only) Main Truss 4	Passed	1 piece(s) 11 7/8" TJI ® 230 @ 16" OC					
(Loading Only) Main Truss 5	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC					
(Loading Only) Main Truss 6	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC					
Main Deck 1	Passed	1 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL @ 16" OC					
Main Beam 1	Passed	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam					
Main Beam 2	Passed	1 piece(s) W12X45 (A992) ASTM Steel					
Main Beam 3	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam					
Main Beam 4	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam					
Main Beam 6	Passed	2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL					
Main Header 1	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam					
Main Header 2	Passed	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam					
Main Header 3	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam					
Main Header 4	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam					
Main Header 5	Passed	2 piece(s) 2 x 6 DF No.2					
Main Header 6	Passed	1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL					
Main Header 7	Passed	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam					
Main Wall 1	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC					
Main Wall 2	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC					
Main Post 1	Passed	1 piece(s) 6 x 6 DF No.2					
Main Post 2	Passed	1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL					
Main Post 3	Failed	1 piece(s) 3 1/2" x 9 1/4" 2.2E Parallam® PSL					

Roof, (Loading Only) Roof Truss 1 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	537 @ 2 1/2"	1708 (3.50")	Passed (31%)	1.15	1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	521 @ 3 1/2"	1903	Passed (27%)	1.15	1.0 D + 1.0 S (Alt Spans)
Moment (Ft-lbs)	2592 @ 10' 13/16"	4847	Passed (53%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.360 @ 10' 1 1/4"	0.660	Passed (L/661)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.574 @ 10' 1 3/16"	0.991	Passed (L/414)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.75"	201	269	336	537	Blocking
2 - Stud wall - SPF	3.50"	3.50"	3.50"	232	310	387	620	Blocking
Blocking Papels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 4" o/c	
Bottom Edge (Lu)	9' 7" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Load	Location	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 21' 8"	16"	15.0	20.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

١	ForteWEB Software Operator	Job Notes
/ 	Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Roof, (Loading Only) Roof Truss 2 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	494 @ 2 1/2"	1708 (3.50")	Passed (29%)	1.15	1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	479 @ 3 1/2"	1903	Passed (25%)	1.15	1.0 D + 1.0 S (Alt Spans)
Moment (Ft-Ibs)	2191 @ 9' 3 1/4"	4847	Passed (45%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.261 @ 9' 3 3/4"	0.608	Passed (L/837)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.417 @ 9' 3 11/16"	0.911	Passed (L/525)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.75"	185	248	310	494	Blocking
2 - Stud wall - SPF	3.50"	3.50"	3.50"	217	289	361	578	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 9" o/c					
Bottom Edge (Lu)	9' 7" o/c					

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Load	Location	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 20' 1"	16"	15.0	20.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Roof, (Loading Only) Roof Truss 3 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

Left cantilever exceeds the maximum braced cantilever length of 5'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	753 @ 5' 9 3/4"	2772 (3.50")	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	414 @ 5' 11 1/2"	1903	Passed (22%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-901 @ 5' 9 3/4"	3635	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.086 @ 13' 2"	0.474	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.127 @ 13' 3 5/16"	0.711	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Moment capacity over cantilever support 1 has been reduced by 25% to lessen the effects of buckling.

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	3.50"	282	376	470	753	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.75"	123	179	224	347	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 5" o/c	
Bottom Edge (Lu)	9' 2" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Load	Location	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 20' 3"	16"	15.0	20.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Roof, Roof Header 1 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2961 @ 2"	12513 (3.50")	Passed (24%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2342 @ 11' 1/2"	13409	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	8642 @ 6' 2"	30360	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.095 @ 6' 2"	0.300	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.157 @ 6' 2"	0.200	Passed (L/917)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/720).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 12'.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1172	1433	1790	2961	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1114	1357	1693	2808	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 4" o/c	
Bottom Edge (Lu)	12' 4" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 4"	N/A	16.0			
1 - Uniform (PLF)	0 to 12'	N/A	174.0	232.5	290.3	Linked from: Roof Truss 1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allon@nkhonginooring.com	

Roof, Roof Header 2 1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1756 @ 2"	7963 (3.50")	Passed (22%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1381 @ 11"	5333	Passed (26%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	3481 @ 4' 3 1/2"	7547	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.119 @ 4' 3 1/2"	0.206	Passed (L/835)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.193 @ 4' 3 1/2"	0.412	Passed (L/514)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	674	866	1082	1756	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	674	866	1082	1756	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	6.4			
1 - Uniform (PLF)	0 to 8' 7"	N/A	150.8	201.8	252.0	Linked from: Roof Truss 1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733	
alienenkilengilieening.com	

Roof, Roof Header 3 1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1621 @ 2"	7963 (3.50")	Passed (20%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1275 @ 11"	5333	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	3213 @ 4' 3 1/2"	7547	Passed (43%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.109 @ 4' 3 1/2"	0.206	Passed (L/905)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.178 @ 4' 3 1/2"	0.412	Passed (L/557)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	623	798	998	1621	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	623	798	998	1621	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	6.4			
1 - Uniform (PLF)	0 to 8' 7"	N/A	138.8	186.0	232.5	Linked from: Roof Truss 2, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Roof, Roof Header 4 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3336 @ 2"	12513 (3.50")	Passed (27%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2736 @ 1' 1/2"	10057	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	9113 @ 5' 9 1/2"	17078	Passed (53%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.211 @ 5' 9 1/2"	0.281	Passed (L/639)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.345 @ 5' 9 1/2"	0.563	Passed (L/391)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1295	1633	2042	3336	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1295	1633	2042	3336	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 7" o/c	
Bottom Edge (Lu)	11' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 7"	N/A	12.0			
1 - Uniform (PLF)	0 to 11' 7"	N/A	211.5	282.0	352.5	Linked from: Roof Truss 3, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job N
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Roof, Roof Header 5 2 piece(s) 2 x 6 DF No.2

PASSED

Overall Length: 3' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	673 @ 2"	6563 (3.50")	Passed (10%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	391 @ 9"	2277	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	496 @ 1' 9 1/2"	1696	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.009 @ 1' 9 1/2"	0.081	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.014 @ 1' 9 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	256	333	417	673	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	256	333	417	673	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 7" o/c	
Bottom Edge (Lu)	3' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

Vortical Loads	Location	Tributary Width	Dead (0.90)	Roof Live	Snow (1.15)	Commonts
0 - Self Weight (PLF)	0 to 3' 7"	N/A	4.2			comments
1 - Uniform (PLF)	0 to 3' 7"	N/A	138.8	186.0	232.5	Linked from: Roof Truss 2, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Roof, Roof Header 6 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1508 @ 2"	6563 (3.50")	Passed (23%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	754 @ 10 3/4"	3002	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1111 @ 1' 9 1/2"	2720	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.009 @ 1' 9 1/2"	0.081	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.014 @ 1' 9 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	572	750	937	1508	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	572	750	937	1508	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 7" o/c	
Bottom Edge (Lu)	3' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead Roof Live		Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 7"	N/A	5.5			
1 - Uniform (PLF)	0 to 3' 7"	N/A	150.8	201.8	252.0	Linked from: Roof Truss 1, Support 1
2 - Uniform (PLF)	0 to 3' 7"	N/A	162.8	216.8	270.8	Linked from: Roof Truss 2, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Roof, Roof Beam 1 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

Overall Length: 15' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6668 @ 2"	7809 (3.50")	Passed (85%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	5571 @ 1' 3 3/8"	13861	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	24876 @ 7' 9 1/2"	34332	Passed (72%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.420 @ 7' 9 1/2"	0.508	Passed (L/435)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.688 @ 7' 9 1/2"	0.762	Passed (L/266)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	2.99"	2594	3261	4073	6668	Blocking
2 - Stud wall - SPF	3.50"	3.50"	2.99"	2594	3261	4073	6668	Blocking
 Blocking Papels are assumed to carry no load 	s annlied dire	ctly above the	m and the ful	l load is annli	ed to the mer	nher heina de	signed	

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 7" o/c	
Bottom Edge (Lu)	15' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 7"	N/A	19.5			
1 - Uniform (PLF)	0 to 15' 7" (Front)	N/A	150.8	201.8	252.0	Linked from: Roof Truss 1, Support 1
2 - Uniform (PLF)	0 to 15' 7" (Front)	N/A	162.8	216.8	270.8	Linked from: Roof Truss 2, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering	
(206) 641-1/33 allen@nkhengineering.com	

Roof, Roof Post 1 1 piece(s) 6 x 6 DF No.2

Wall Height: 12'

Member Height: 11' 7 1/2"

Tributary Width: 1'

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	6667	14197	Passed (47%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	6667	12856	Passed (52%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	84			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	78	5485	Passed (1%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	245 @ mid-span	2773	Passed (9%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.04 @ mid-span	1.16	Passed (L/3321)		1.0 D + 0.6 W
Bending/Compression	0.23	1	Passed (23%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

Comments

· Lateral deflection criteria: Wind (L/120)

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Max Unbraced Length

1'

. This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Spruce-Pine-Fir	Member Type : Column
Base	2Х	Spruce-Pine-Fir	Design Methodology : ASD

Drawing is Conceptual

Lateral Connectio	ins			
Supports	Connector	Type/Model	Quantity	Connector Nailing
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Loads	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (lb)	N/A	-	-	-	
2 - Point (lb)	N/A	2594	3261	4073	Linked from: Roof Beam 1, Support 2

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	24.1	

 ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Roof, Roof Wall 1 1 piece(s) 2 x 4 DF No.2 @ 16" OC

Wall Height: 12'

Member Height: 11' 7 1/2"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	40	50	Passed (80%)		
Compression (lbs)	1115	1517	Passed (73%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	1115	2789	Passed (40%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

Lateral deflection criteria: Wind (L/120)

· Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

1

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Spruce-Pine-Fir	Member Type : Stud
Base 2X			Spruce-Pine-Fir	Design Methodology : ASD
				9
Max Unbraced Length		Comments		

Drawing is Conceptual

		Dead	Roof Live	Snow	
Vertical Loads	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (PLF)	16.00"	150.8	201.8	252.0	Linked from: Roof Truss 1, Support 1
2 - Point (PLF)	16.00"	162.8	216.8	270.8	Linked from: Roof Truss 2, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Roof, Roof Wall 2 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12'

Member Height: 11' 7 1/2"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	619	5432	Passed (11%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	619	4383	Passed (14%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

Lateral deflection criteria: Wind (L/120)

• Input axial load eccentricity for the design is zero

• Applicable calculations are based on NDS.

1'

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре		Material	System : Wall		
Тор	Dbl 2X		Spruce-Pine-Fir	Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD		
Base	2X		Spruce-Pine-Fir			
				besign methodology . Asb		
Max Unbraced Length			Comments			

Drawing is Conceptual

		Dead	Roof Live	Snow	
Vertical Load	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (PLF)	16.00"	174.0	232.5	290.3	Linked from: Roof Truss 1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Upper Floor, (Loading Only) Upper Truss 1 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	484 @ 2 1/2"	1183 (2.25")	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	471 @ 3 1/2"	1655	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1549 @ 6' 8 1/2"	4215	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.102 @ 6' 8 1/2"	0.325	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.140 @ 6' 8 1/2"	0.650	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	56	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.A structural analysis of the deck has not been performed.

Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	134	358	492	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	134	358	492	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 11" o/c	
Bottom Edge (Lu)	13' 3" o/c	
		•

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 5"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job I
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Upper Floor, (Loading Only) Upper Truss 2 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	683 @ 2 1/2"	1183 (2.25")	Passed (58%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	669 @ 3 1/2"	1655	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	3109 @ 9' 5"	4215	Passed (74%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.368 @ 9' 5"	0.460	Passed (L/600)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.507 @ 9' 5"	0.921	Passed (L/436)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	39	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	188	502	691	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	188	502	691	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 9" o/c				
Bottom Edge (Lu)	18' 8" o/c				

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 18' 10"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Upper Floor, (Loading Only) Upper Truss 3 1 piece(s) 14" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	747 @ 2 1/2"	1041 (2.25")	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	733 @ 3 1/2"	1860	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	3728 @ 10' 3 1/2"	3740	Passed (100%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.448 @ 10' 3 1/2"	0.504	Passed (L/540)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.616 @ 10' 3 1/2"	1.008	Passed (L/393)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	35	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	206	549	755	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	206	549	755	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	3' 1" o/c				
Bottom Edge (Lu)	20' 5" o/c				

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 20' 7"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	1
(206) 641-1733	
allen@nkhengineering.com	i i i i i i i i i i i i i i i i i i i

Upper Floor, (Loading Only) Upper Truss 4 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	683 @ 2 1/2"	1183 (2.25")	Passed (58%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	669 @ 3 1/2"	1655	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3109 @ 9' 5"	4215	Passed (74%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.368 @ 9' 5"	0.460	Passed (L/600)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.507 @ 9' 5"	0.921	Passed (L/436)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	39	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	188	502	691	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	188	502	691	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 9" o/c				
Bottom Edge (Lu)	18' 8" o/c				

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 18' 10"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	1
(206) 641-1733	
allen@nkhengineering.com	1

Upper Floor, (Loading Only) Upper Truss 5 1 piece(s) 2 x 12 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	672 @ 2 1/2"	1434 (2.25")	Passed (47%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	503 @ 1' 2 3/4"	2025	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1436 @ 4' 7"	2729	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.056 @ 4' 7"	0.219	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.069 @ 4' 7"	0.438	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	138	550	688	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	138	550	688	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	9' o/c				
Bottom Edge (Lu)	9' o/c				
-Maximum alloughte bracing intervals based on applied land					

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 9' 2"	24"	15.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Upper Floor, (Loading Only) Upper Truss 6 1 piece(s) 2 x 12 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	366 @ 2 1/2"	1434 (2.25")	Passed (25%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	197 @ 1' 2 3/4"	2025	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	408 @ 2' 6 1/2"	2729	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.004 @ 2' 6 1/2"	0.117	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.006 @ 2' 6 1/2"	0.233	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	76	305	381	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	76	305	381	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 11" o/c				
Bottom Edge (Lu)	4' 11" o/c				
-Maximum alloughte bracing intervals based on applied lead					

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 5' 1"	24"	15.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Upper Floor, (Loading Only) Upper Truss 7 1 piece(s) 2 x 12 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	493 @ 2 1/2"	1434 (2.25")	Passed (34%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	369 @ 1' 2 3/4"	2025	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1053 @ 4' 7"	2729	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.037 @ 4' 7"	0.219	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.051 @ 4' 7"	0.438	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	138	367	504	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	138	367	504	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	9' o/c					
Bottom Edge (Lu)	9' o/c					
Maximum alloughte brasing intervals based on applied land						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 9' 2"	24"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	1
(206) 641-1733	1
allen@nkhengineering.com	1

Upper Floor, (Loading Only) Upper Truss 8 1 piece(s) 11 7/8" TJI ® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	637 @ 2 1/2"	1202 (2.25")	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	623 @ 3 1/2"	1705	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2701 @ 8' 9 1/2"	6180	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.245 @ 8' 9 1/2"	0.429	Passed (L/841)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.337 @ 8' 9 1/2"	0.858	Passed (L/611)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	46	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	176	469	645	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	176	469	645	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 9" o/c					
Bottom Edge (Lu)	17' 5" o/c					

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 17' 7"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Upper Floor, (Loading Only) Upper Truss 9 1 piece(s) 2 x 12 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	637 @ 2 1/2"	1434 (2.25")	Passed (44%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	555 @ 1' 2 3/4"	2025	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2701 @ 8' 9 1/2"	2729	Passed (99%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.366 @ 8' 9 1/2"	0.429	Passed (L/563)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.503 @ 8' 9 1/2"	0.858	Passed (L/409)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	176	469	645	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	176	469	645	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11" o/c					
Bottom Edge (Lu)	17' 5" o/c					
Maximum allowable brasing intervals based on applied land						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 17' 7"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Upper Floor, (Loading Only) Upper Joist 10 1 piece(s) 2 x 8 DF No.2 @ 16" OC

Overall Length: 12'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	534 @ 2 1/2"	1434 (2.25")	Passed (37%)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Shear (lbs)	435 @ 9' 5 1/4"	1305	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1251 @ 5' 2 1/2"	1360	Passed (92%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.255 @ 5' 2 13/16"	0.252	Passed (L/474)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.311 @ 5' 2 11/16"	0.503	Passed (L/388)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	102	419/-4	172	545	1 1/4" Rim Board
2 - Stud wall - SPF	5.50"	5.50"	1.50"	138	553	230	725	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	5' o/c			
Bottom Edge (Lu)	11' 11" o/c			
Maximum allowable burning intervals based on earlied land				

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 12'	16"	15.0	60.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Not
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

es

Upper Floor, Upper Beam 1 1 piece(s) 6 x 10 DF No.2

Overall Length: 17' 4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1155 @ 2"	8181 (3.50")	Passed (14%)		1.0 D (All Spans)
Shear (lbs)	1010 @ 1' 1"	5330	Passed (19%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	4813 @ 8' 8"	5429	Passed (89%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.000 @ 0	0.425	Passed (2L/999+)		1.0 D (All Spans)
Total Load Defl. (in)	0.490 @ 8' 8"	0.850	Passed (L/416)		1.0 D (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

· Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Factored	Accessories	
1 - Stud wall - SPF	3.50"	3.50"	1.50"	1155	1155	Blocking	
2 - Stud wall - SPF	3.50"	3.50"	1.50"	1155	1155	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed							

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	17' 4" o/c				
Bottom Edge (Lu)	17' 4" o/c				
Maximum allowable humbers intervals based on analised and					

imum allowable bracing intervals based on applied load

			Dead	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	Comments
0 - Self Weight (PLF)	0 to 17' 4"	N/A	13.2	
1 - Uniform (PLF)	0 to 17' 4" (Front)	N/A	120.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Upper Floor, Upper Beam 2 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1323 @ 2"	8181 (3.50")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	789 @ 1' 1/2"	8745	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1495 @ 2' 7"	14850	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 2' 7"	0.121	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 2' 7"	0.242	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 10".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	384	939	1323	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	384	939	1323	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	5' 2" o/c				
Bottom Edge (Lu)	5' 2" o/c				
Maximum allowable bracing intervals based on applied load					

imum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 5' 2"	N/A	12.0		
1 - Uniform (PSF)	0 to 5' 2" (Front)	4' 6"	15.0	40.0	Floor
2 - Uniform (PLF)	0 to 5' 2" (Front)	N/A	69.0	183.5	Linked from: Upper Truss 7, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Upper Floor, Upper Beam 3 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2765 @ 11' 3"	8181 (3.50")	Passed (34%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2249 @ 10' 4 1/2"	8745	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	7257 @ 5' 10 1/16"	14850	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.106 @ 6' 1 3/16"	0.277	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.246 @ 5' 11"	0.554	Passed (L/541)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 1".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	865	525	1389	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	1209	1557	2765	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	11' 5" o/c				
Bottom Edge (Lu)	11' 5" o/c				
Maximum allowable bracing intervals based on applied load					

m allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 5"	N/A	12.0		
1 - Uniform (PLF)	5' 6" to 11' 5" (Front)	N/A	132.0	351.8	Linked from: Upper Truss 8, Support 2
2 - Point (lb)	5' 6" (Front)	N/A	1155	-	Linked from: Upper Beam 1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

Overall Length: 18' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1817 @ 2"	8181 (3.50")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1674 @ 1' 2"	10203	Passed (16%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	11106 @ 9'	20213	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.215 @ 9' 2 9/16"	0.456	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.622 @ 9' 3"	0.913	Passed (L/352)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 18' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	1332	485	1817	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	1320	454	1774	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	18' 7" o/c				
Bottom Edge (Lu)	18' 7" o/c				
Maximum allowable bracing intervals based on applied load					

ium allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 18' 7"	N/A	14.0		
1 - Uniform (PLF)	0 to 18' 7" (Front)	N/A	108.0	-	Floor
2 - Point (lb)	9' (Front)	N/A	384	939	Linked from: Upper Beam 2, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Upper Floor, Upper Beam 5 1 piece(s) W12X53 (A992) ASTM Steel

Overall Length: 24' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

			1		
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	19274 @ 24' 2"	23375 (5.50")	Passed (82%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	19011 @ 24' 1/2"	83490	Passed (23%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	108987 @ 12' 11 9/16"	139286	Passed (78%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.468 @ 12' 4 3/4"	0.596	Passed (L/611)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.908 @ 12' 4 5/8"	1.192	Passed (L/315)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Bearing reinforcement may be required for support located at 24' 2".

• Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	5.50"	8602	5740	5127	6404	17710	Blocking
2 - Stud wall - SPF	5.50"	5.50"	5.50"	9255	7128	4987	6229	19274	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead Floor Live Roof Live		Snow		
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 24' 6"	N/A	53.0				
1 - Uniform (PLF)	0 to 24' 6"	N/A	144.0	-	-	-	Floor
2 - Uniform (PLF)	0 to 24' 2"	N/A	150.8	-	201.8	252.0	Linked from: Roof Truss 1, Support 1
3 - Uniform (PLF)	0 to 24' 2"	N/A	162.8	-	216.8	270.8	Linked from: Roof Truss 2, Support 2
4 - Uniform (PLF)	0 to 24' 2"	N/A	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 1
5 - Uniform (PLF)	16' 9" to 24' 2"	N/A	69.0	183.5	-	-	Linked from: Upper Truss 7, Support 2
6 - Point (lb)	16' 9"	N/A	1209	1557	-	-	Linked from: Upper Beam 3, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weverhaeuser.com/woodproducts/document-library.

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6239 @ 4"	12856 (5.50")	Passed (49%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5268 @ 1' 1"	8381	Passed (63%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-Ibs)	9739 @ 2' 3"	11859	Passed (82%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.070 @ 2' 10 7/16"	0.131	Passed (L/895)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.121 @ 2' 10 3/8"	0.262	Passed (L/523)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 5' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	B	earing Lengt	th	Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.67"	2551	2332	2070	2586	6239	Blocking
2 - Stud wall - SPF	5.50"	5.50"	2.02"	1851	2332	1191	1487	4715	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 11" o/c					
Bottom Edge (Lu)	5' 11" o/c					
Avimum allowable bracing intervals based on applied load						

um allowable bracing intervals based on applied load

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 11"	N/A	10.0				
1 - Point (lb)	2' 3" (Top)	N/A	2594	-	3261	4073	Linked from: Roof Post 1, Support 1
2 - Uniform (PLF)	0 to 5' 11" (Front)	N/A	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 1
3 - Uniform (PLF)	0 to 5' 11" (Front)	N/A	141.0	376.5	-	-	Linked from: Upper Truss 4, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Upper Floor, Upper Beam 7 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 12' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7103 @ 4"	12856 (5.50")	Passed (55%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	5499 @ 1' 5 1/2"	11660	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	20630 @ 6' 5 1/2"	26400	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.280 @ 6' 5 1/2"	0.306	Passed (L/525)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.391 @ 6' 5 1/2"	0.613	Passed (L/376)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 12' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	3.04"	2012	5091	7103	Blocking
2 - Stud wall - SPF	5.50"	5.50"	3.04"	2012	5091	7103	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 11" o/c				
Bottom Edge (Lu)	12' 11" o/c				
Maximum allowable bracing intervals based on applied load					

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 11"	N/A	16.0		
1 - Uniform (PLF)	0 to 12' 11" (Front)	N/A	154.5	411.8	Linked from: Upper Truss 3, Support 1
2 - Uniform (PLF)	0 to 12' 11" (Front)	N/A	141.0	376.5	Linked from: Upper Truss 4, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Upper Floor, Upper Beam 8 1 piece(s) W10X39 (A992) ASTM Steel

Overall Length: 16'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]	
Member Reaction (lbs)	11237 @ 4"	18677 (5.50")	Passed (60%)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]	
Shear (lbs)	10754 @ 5 1/2"	62496	Passed (17%)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]	
Moment (Ft-lbs)	35104 @ 8' 1 3/8"	95863	Passed (37%)		1.0 D + 1.0 L (All Spans) [1]	
Live Load Defl. (in)	0.149 @ 8'	0.383	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]	
Total Load Defl. (in)	0.247 @ 8' 3/8"	0.256	Passed (L/745)		1.0 D + 1.0 L (All Spans) [1]	

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/720).

• Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	5.50"	4615	5808	1593	3021	11237	Blocking
2 - Stud wall - SPF	5.50"	5.50"	5.50"	4295	5808	1197	2526	10545	Blocking
 Blocking Panels are assumed to carry no load 	s applied dire	ctly above the	m and the ful	load is appli	ed to the men	nher heina de	signed.		•

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16'	N/A	39.0				
1 - Uniform (PLF)	0 to 16'	N/A	144.0	-	-	-	Floor
2 - Point (lb)	10"	N/A	1172	-	1433	1790	Linked from: Roof Header 1, Support 1
3 - Point (lb)	13' 4"	N/A	1114	-	1357	1693	Linked from: Roof Header 1, Support 2
4 - Uniform (PLF)	0 to 16'	N/A	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 2
5 - Uniform (PLF)	0 to 16'	N/A	76.5	314.3/-3.0	-	129.0	Linked from: Upper Truss 10, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

2/6/2024 11:07:11 PM UTC ForteWEB v3.6, Engine: V8.3.1.5, Data: V8.1.4.1 File Name: 22-112 **S139** Pi

Upper Floor, Upper Beam 9

2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Left cantilever exceeds the maximum braced cantilever length of 7'.

FAILED

BY HARDWARE PER PLAN/DETAILS

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5329 @ 7' 5 3/4"	8181 (5.50")	Passed (65%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2718 @ 8' 8 3/8"	7897	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-7685 @ 7' 5 3/4"	13386	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.347 @ 0	0.374	Passed (2L/518)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.472 @ 0	0.748	Passed (2L/380)		1.0 D + 1.0 L (Alt Spans)

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Moment capacity over cantilever support 1 has been reduced by 25% to lessen the effects of buckling.

	Bearing Length		Loads	to Supports				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - SPF	5.50"	5.50"	3.58"	2134	3195	5329	Blocking	
2 - Stud wall - SPF	5.50"	5.50"	1.66"	704	1767/-350	2471	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	20' o/c				
Bottom Edge (Lu)	19' 5" o/c				
Mandanian allowable based as said as analised based					

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 20'	N/A	12.1		
1 - Uniform (PLF)	0 to 20' (Front)	N/A	72.0	-	Floor
2 - Uniform (PLF)	7' 3" to 20' (Front)	N/A	69.0	275.0	Linked from: Upper Truss 5, Support 1
3 - Uniform (PLF)	0 to 7' 3" (Front)	N/A	38.0	152.5	Linked from: Upper Truss 6, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Upper Floor, Upper Beam 10 1 piece(s) 5 1/2" x 12" 24F-V8 DF Glulam

FAILED

UPLIFT IS RESISTED BY HARDWARE PER PLAN/DETAILS

An excessive uplift of -5111 lbs at support located at 9' 1" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11947 @ 4' 5 3/4"	12856 (5.50")	Passed (93%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	5849 @ 3' 3"	11660	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	0 @ N/A	N/A	Passed (N/A)		N/A
Neg Moment (Ft-lbs)	-25475 @ 4' 5 3/4"	26400	Passed (96%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.235 @ 0	0.299	Passed (2L/456)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.412 @ 0	0.448	Passed (2L/260)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 1".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

· Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	5.11"	5644	6303	11947	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.50"	-2003	-3108	-5111	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed							

ned to carry no loads applied directly above them and the full load is applied to the member being designed

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	9' 5" o/c				
Bottom Edge (Lu) 9' 5" o/c					
Maximum allowable bracing intervals based on applied load					

intervals based on applied

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 5"	N/A	16.0		
1 - Uniform (PLF)	0 to 9' 5" (Front)	N/A	144.0	-	Floor
2 - Point (lb)	0 (Front)	N/A	2134	3195	Linked from: Upper Beam 9, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Weyerhaeuser

Upper Floor, Upper Header 1 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2891 @ 2"	12513 (3.50")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2189 @ 1' 1/2"	8745	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	5730 @ 4' 3 1/2"	14850	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.065 @ 4' 3 1/2"	0.206	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.117 @ 4' 3 1/2"	0.412	Passed (L/848)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1275	1616	2891	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1275	1616	2891	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	12.0		
1 - Uniform (PLF)	0 to 8' 7"	N/A	144.0	-	Default Load
2 - Uniform (PLF)	0 to 8' 7"	N/A	141.0	376.5	Linked from: Upper Truss 4, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Upper Floor, Upper Header 3 2 piece(s) 2 x 6 DF No.2

Overall Length: 4' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	670 @ 2"	6563 (3.50")	Passed (10%)		1.0 D (All Spans)
Shear (lbs)	450 @ 9"	1782	Passed (25%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	660 @ 2' 3 1/2"	1327	Passed (50%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.000 @ 0	0.106	Passed (2L/999+)		1.0 D (All Spans)
Total Load Defl. (in)	0.032 @ 2' 3 1/2"	0.213	Passed (L/999+)		1.0 D (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to : (Ib	Supports s)	
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	670	670	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	670	670	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 7" o/c	
Bottom Edge (Lu)	4' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	
Vertical Loads	Location	Tributary Width	(0.90)	Comments
0 - Self Weight (PLF)	0 to 4' 7"	N/A	4.2	
1 - Uniform (PLF)	0 to 4' 7"	N/A	288.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Upper Floor, Upper Header 4 1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3409 @ 2"	7963 (3.50")	Passed (43%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2636 @ 1' 2"	6493	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	9489 @ 6' 2"	12863	Passed (74%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.338 @ 6' 2"	0.400	Passed (L/426)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.424 @ 6' 2"	0.600	Passed (L/339)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 12'.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	693	2558	1064	3409	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	693	2558	1064	3409	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 4" o/c	
Bottom Edge (Lu)	12' 4" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 4"	N/A	8.9			
1 - Uniform (PLF)	0 to 12' 4"	N/A	103.5	414.8	172.5	Linked from: Upper Truss 10, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5110 @ 12' 7"	8181 (5.50")	Passed (62%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3808 @ 11' 1 1/2"	10640	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	15247 @ 6' 9 3/4"	31114	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.103 @ 6' 5 1/2"	0.306	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.203 @ 6' 6 1/16"	0.204	Passed (L/726)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/720).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	3.33"	2290	2659	330	412	4949	Blocking
2 - Stud wall - SPF	5.50"	5.50"	3.44"	2451	2659	536	670	5110	Blocking
Placking Danale are accurred to carry no loads applied directly above them and the full load is applied to the member being designed									

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11' 9" o/c					
Bottom Edge (Lu)	12' 11" o/c					

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 11"	N/A	16.3				
1 - Uniform (PLF)	0 to 12' 11" (Front)	N/A	144.0	-	-	-	Floor
2 - Point (lb)	7' 11" (Top)	N/A	674	-	866	1082	Linked from: Roof Header 2, Support 2
3 - Uniform (PLF)	0 to 12' 11" (Front)	N/A	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3038 @ 4"	4091 (5.50")	Passed (74%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1794 @ 1' 9 1/2"	5320	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	5672 @ 4' 4 1/2"	15557	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.047 @ 4' 4 1/2"	0.202	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.079 @ 4' 4 1/2"	0.404	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	4.08"	1237	1801	3038	Blocking
2 - Stud wall - SPF	5.50"	5.50"	4.08"	1237	1801	3038	Blocking
- Placking Danals are accurated to carry no loads applied directly above them and the full load is applied to the member being designed							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 9" o/c	
Bottom Edge (Lu)	8' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 9"	N/A	8.2		
1 - Uniform (PLF)	0 to 8' 9" (Front)	N/A	120.0	-	Floor
2 - Uniform (PLF)	0 to 8' 9" (Front)	N/A	154.5	411.8	Linked from: Upper Truss 3, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	
5 5	

Upper Floor, Upper Header 7 1 piece(s) 6 x 10 DF No.2

Overall Length: 8' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2346 @ 4"	12856 (5.50")	Passed (18%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1688 @ 1' 3"	5922	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	4477 @ 4' 5 1/2"	6032	Passed (74%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.055 @ 4' 5 1/2"	0.206	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.107 @ 4' 5 1/2"	0.412	Passed (L/922)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	1.50"	1149	1197	2346	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.50"	1149	1197	2346	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	8' 11" o/c				
Bottom Edge (Lu)	8' 11" o/c				
Maximum allowable bracing intervals based on applied load					

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 11"	N/A	13.2		
1 - Uniform (PLF)	0 to 8' 11" (Front)	N/A	144.0	-	Floor
2 - Uniform (PLF)	0 to 8' 11" (Front)	N/A	100.5	268.5	Linked from: Upper Truss 1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Overall Length: 8' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2983 @ 4"	8181 (5.50")	Passed (36%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2175 @ 1' 2 1/2"	5565	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	5693 @ 4' 5 1/2"	9450	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.103 @ 4' 5 1/2"	0.206	Passed (L/966)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.182 @ 4' 5 1/2"	0.412	Passed (L/543)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.01"	1305	1679	2983	Blocking
2 - Stud wall - SPF	5.50"	5.50"	2.01"	1305	1679	2983	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	8' 11" o/c				
Bottom Edge (Lu) 8' 11" o/c					
•Maximum allowable bracing intervals based on applied load					

num allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 11"	N/A	7.7		
1 - Uniform (PLF)	0 to 8' 11" (Front)	N/A	144.0	-	Floor
2 - Uniform (PLF)	0 to 8' 11" (Front)	N/A	141.0	376.5	Linked from: Upper Truss 2, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Upper Floor, Upper Header 9 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

Overall Length: 11' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2979 @ 4"	12856 (5.50")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2375 @ 1' 2 1/2"	8745	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	7911 @ 5' 11 1/2"	14850	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.165 @ 5' 11 1/2"	0.281	Passed (L/819)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.300 @ 5' 11 1/2"	0.563	Passed (L/451)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	1.50"	1341	1639	2979	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.50"	1341	1639	2979	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11' 11" o/c					
Bottom Edge (Lu) 11' 11" o/c						
Maximum allowable bracing intervals based on applied load						

imum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 11"	N/A	12.0		
1 - Uniform (PLF)	0 to 11' 11" (Front)	N/A	144.0	-	Floor
2 - Uniform (PLF)	0 to 11' 11" (Front)	N/A	69.0	275.0	Linked from: Upper Truss 5, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Upper Floor, Upper Header 10 2 piece(s) 2 x 10 DF No.2

Overall Length: 8' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1551 @ 2"	6563 (3.50")	Passed (24%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1113 @ 1' 3/4"	3330	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2931 @ 4' 3 1/2"	3529	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.094 @ 4' 3 1/2"	0.275	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.119 @ 4' 3 1/2"	0.412	Passed (L/832)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	320	1159	483	1551	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	320	1159	483	1551	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	7.0			
1 - Uniform (PSF)	0 to 8' 7"	4' 6"	15.0	60.0	25.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Upper Floor, Upper Wall 1 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12'

Member Height: 11' 7 1/2"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	1101	5432	Passed (20%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	1101	4383	Passed (25%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	112			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	103	1584	Passed (7%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	326 @ mid-span	1342	Passed (24%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	1.16	Passed (L/836)		1.0 D + 0.6 W
Bending/Compression	0.27	1	Passed (27%)	1 60	10D + 0.6W

Lateral deflection criteria: Wind (L/120)

· Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

				_		
Supports	orts Type		Material	System : Wall		
Тор	Dbl 2X		Spruce-Pine-Fir	Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD		
Base 2X			Spruce-Pine-Fir			
Max Unbraced Length			Comments			

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (PLF)	16.00"	144.0	-	-	-	Default Load
2 - Point (PLF)	16.00"	92.3	-	134.3	168.0	Linked from: Roof Truss 3, Support 2
3 - Point (PLF)	16.00"	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 2

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	24.1	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Upper Floor, Upper Wall 2 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12'

Member Height: 11' 7 1/2"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	2100	5432	Passed (39%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2100	4383	Passed (48%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	112			1.60	1.0 D + 0.6 W
Lateral Shear (Ibs)	103	1584	Passed (7%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	326 @ mid-span	1342	Passed (24%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	1.16	Passed (L/836)		1.0 D + 0.6 W
Bending/Compression	0.42	1	Passed (42%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

· Lateral deflection criteria: Wind (L/120)

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Type Dbl 2X		Material	System : Wall	
Тор			Spruce-Pine-Fir	Member Type : Stud	
Base	2X		Spruce-Pine-Fir	Design Methodology · ASE	
Max Unbraced Length			Comments		
1'					

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (PLF)	16.00"	144.0	-	-	-	Default Load
2 - Point (PLF)	16.00"	150.8	-	201.8	252.0	Linked from: Roof Truss 1, Support 1
3 - Point (PLF)	16.00"	162.8	-	216.8	270.8	Linked from: Roof Truss 2, Support 2
4 - Point (PLF)	16.00"	100.5	268.5	-	-	Linked from: Upper Truss 1, Support 1
5 - Point (PLF)	16.00"	141.0	376.5	-	-	Linked from: Upper Truss 2, Support 2

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	24.1	

 ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel	
(206) 641-1733	
allen@nkhengineering.com	

Upper Floor, Upper Post 1 1 piece(s) 6 x 8 DF No.2

Wall Height: 11'

1'

Member Height: 10' 7 1/2"

Tributary Width: 1'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (34%)		
Compression (lbs)	17710	27647	Passed (64%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	17710	17531	Passed (101%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

· Lateral deflection criteria: Wind (L/120)

· Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Comments

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Column
Base	2X	Spruce-Pine-Fir	Building Code : IBC 2018 Design Methodology : ASD
			Design Methodology . ASD

Drawing is Conceptual

Max Unbraced Length

Vertical Load	Tributary Width	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (lb)	N/A	8602	5740	5127	6404	Linked from: Upper Beam 5, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

FAILED

Upper Floor, Upper Post 2 1 piece(s) 4 x 8 DF No.2

POST IS LET THROUGH BOTTOM PLATE FOR DIRECT **BEARING ON BEAM**

Wall Height: 11'

Member Height: 10' 7 1/2"

Tributary Width: 1'

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	18	50	Passed (35%)		
Compression (lbs)	25512	27770	Passed (92%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	25512	15859	Failed (161%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

· Lateral deflection criteria: Wind (L/120)

· Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Douglas Fir-Larch	Member Type : Column Building Code : IBC 2018 Design Methodology : ASD
Base	2X		Douglas Fir-Larch	
Max Unbraced Length			Comments	
1'				

		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (lb)	N/A	2551	2332	2070	2586	Linked from: Upper Beam 6, Support 1
2 - Point (lb)	N/A	9255	7128	4987	6229	Linked from: Upper Beam 5, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

PASSED

Upper Floor, Upper Post 3 1 piece(s) 4 x 6 DF No.2

Wall Height: 11'

Member Height: 10' 7 1/2"

Tributary Width: 1'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46%)		
Compression (lbs)	11286	14247	Passed (79%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	11286	12031	Passed (94%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

Lateral deflection criteria: Wind (L/120)

· Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Max Unbraced Length

1'

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Comments

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : Column Building Code : IBC 2018 Design Methodology : ASD
Base	2X	Douglas Fir-Larch	
			besign methodology . Abb

Drawing is Conceptual

		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (lb)	N/A	1851	2332	1191	1487	Linked from: Upper Beam 6, Support 2
2 - Point (lb)	N/A	2012	5091	-	-	Linked from: Upper Beam 7, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Upper Floor, Upper Post 4 1 piece(s) 6 x 6 DF No.2

Wall Height: 11'

Member Height: 10' 7 1/2"

Tributary Width: 1'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46%)		
Compression (lbs)	10103	14825	Passed (68%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	10546	18906	Passed (56%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

Comments

· Lateral deflection criteria: Wind (L/120)

· Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Max Unbraced Length

1'

• This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

Supports	Туре	Material	System : Wall
Тор	Dbl 2X	Douglas Fir-Larch	Member Type : C
Base	2X	Douglas Fir-Larch	Building Code : I
			Design Methodol

Drawing is Conceptual

Column BC 2018 ogy : ASD

Vertical Load	Tributary Width	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (lb)	N/A	4295	5808	1197	2526	Linked from: Upper Beam 8, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Main, (Loading Only) Main Truss 1 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	677 @ 2 1/2"	1183 (2.25")	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	663 @ 3 1/2"	1655	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3053 @ 9' 4"	4215	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.356 @ 9' 4"	0.456	Passed (L/615)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.489 @ 9' 4"	0.913	Passed (L/447)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	40	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	187	498	684	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	187	498	684	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	4' 10" o/c					
Bottom Edge (Lu)	18' 6" o/c					

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 18' 8"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job N Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Main, (Loading Only) Main Truss 2 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	466 @ 2 1/2"	1183 (2.25")	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	452 @ 3 1/2"	1655	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1432 @ 6' 5 1/2"	4215	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.088 @ 6' 5 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.121 @ 6' 5 1/2"	0.625	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	57	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor. · A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	129	344	474	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	129	344	474	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	7' 2" o/c				
Bottom Edge (Lu)	12' 9" o/c				

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 11"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job N
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Main, (Loading Only) Main Truss 3-2 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	423 @ 2 1/2"	1183 (2.25")	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	409 @ 3 1/2"	1655	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1177 @ 5' 10 1/2"	4215	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.062 @ 5' 10 1/2"	0.283	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.086 @ 5' 10 1/2"	0.567	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	60	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser EdgeTM Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	118	313	431	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.75"	117	313	431	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' o/c	
Bottom Edge (Lu)	11' 8" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 11' 9"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733	
allen@nkhengineering.com	

Main, (Loading Only) Main Truss 4 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	637 @ 2 1/2"	1183 (2.25")	Passed (54%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	623 @ 3 1/2"	1655	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	2701 @ 8' 9 1/2"	4215	Passed (64%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.283 @ 8' 9 1/2"	0.429	Passed (L/729)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.389 @ 8' 9 1/2"	0.858	Passed (L/530)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	44	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	176	469	645	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.75"	176	469	645	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 2" o/c	
Bottom Edge (Lu)	17' 6" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 17' 7"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Main, (Loading Only) Main Truss 5 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	448 @ 2 1/2"	1183 (2.25")	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	434 @ 3 1/2"	1655	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1320 @ 6' 2 1/2"	4215	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.076 @ 6' 2 1/2"	0.300	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.105 @ 6' 2 1/2"	0.600	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	59	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	124	331	455	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.75"	124	331	455	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 6" o/c	
Bottom Edge (Lu)	12' 4" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 5"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Main, (Loading Only) Main Truss 6 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	781 @ 2 1/2"	1183 (2.25")	Passed (66%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	762 @ 3 1/2"	1655	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2971 @ 7' 11"	4215	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.302 @ 7' 11"	0.385	Passed (L/613)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.373 @ 7' 11"	0.771	Passed (L/496)		1.0 D + 0.75 L + 0.75 S (All Spans)
TJ-Pro [™] Rating	49	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

· A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	158	633	264	831	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.75"	158	633	264	831	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 9" o/c	
Bottom Edge (Lu)	15' 9" o/c	

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 15' 10"	16"	15.0	60.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

ForteWEB Software Operator	Job Notes
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

Main, Main Deck 1 1 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL @ 16" OC

Overall Length: 17' 3"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1274 @ 11' 7 1/4"	2603 (3.50")	Passed (49%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	618 @ 10' 8 1/4"	3076	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-1594 @ 11' 7 1/4"	5826	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.272 @ 17' 3"	0.376	Passed (2L/498)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.290 @ 17' 3"	0.565	Passed (2L/466)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
TJ-Pro [™] Rating	58	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).
Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	90	473/-104	-46	563/-22	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.71"	255	1019	249	1274	Blocking
- Dim Reput is provinced to community all loads applie	والمراجع والقوام والألوار اور	and the law second	بماجمع معربه ماطر	والمعالم والمعالم				

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	17' 2" o/c				
Bottom Edge (Lu)	17' 2" o/c				
Maximum allowable bracing intervals based on applied load.					

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 11' 2"	16"	15.0	60.0	-	Default Load
2 - Uniform (PSF)	11' 2" to 17' 3"	16"	15.0	60.0	25.0	Floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Main, Main Beam 1 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 11' 8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9159 @ 11' 4"	12856 (5.50")	Passed (71%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7268 @ 10' 2 1/2"	11660	Passed (62%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	20707 @ 6' 9 15/16"	26400	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.152 @ 5' 11 13/16"	0.275	Passed (L/870)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.318 @ 6' 1/16"	0.550	Passed (L/415)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $L = 11^{\circ}$.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	B	earing Leng	th	Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.87"	3424	3281	308	385	6705	Blocking
2 - Stud wall - SPF	5.50"	5.50"	3.92"	4823	4262	1217	1520	9159	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11' 8" o/c					
Bottom Edge (Lu)	11' 8" o/c					
Maximum allowable bracing intervals based on applied load						

app

			Deed	Floor Live	DeefLive	Cross	
			Dead	FIOOI LIVE	ROOTLIVE	SHOW	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 8"	N/A	16.0				
1 - Uniform (PLF)	0 to 11' 8" (Front)	N/A	288.0	-	-	-	Floor
2 - Uniform (PLF)	8' 6" to 11' 4" (Front)	N/A	174.0	-	232.5	290.3	Linked from: Roof Truss 1, Support 2
3 - Point (Ib)	8' 6" (Front)	N/A	674	-	866	1082	Linked from: Roof Header 2, Support 2
4 - Uniform (PLF)	8' 6" to 11' 4" (Front)	N/A	100.5	268.5	-	-	Linked from: Upper Truss 1, Support 2
5 - Point (Ib)	8' 6" (Front)	N/A	1149	1197	-	-	Linked from: Upper Header 7, Support 2
6 - Uniform (PLF)	0 to 11' 4" (Front)	N/A	96.8	258.0	-	-	Linked from: Main Truss 2, Support 2
7 - Uniform (PLF)	0 to 11' 4" (Front)	N/A	88.5	234.8	-	-	Linked from: Main Truss 3-2, Support 1

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Main, Main Beam 2 1 piece(s) W12X45 (A992) ASTM Steel

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	31264 @ 15' 7"	34313 (5.50")	Passed (91%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	30869 @ 15' 5 1/2"	81070	Passed (38%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	125512 @ 9'	128159	Passed (98%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.250 @ 8' 2 1/2"	0.381	Passed (L/732)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.443 @ 8' 2 1/2"	0.762	Passed (L/413)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Bearing reinforcement may be required for support located at 15' 7".

• Bearing reinforcement may be required for point load located at 9'.

• Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

	Bearing Length				Loads				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Column - DF	5.50"	5.50"	5.50"	7854	10302	3118	3895	18501	Blocking
2 - Column - DF	5.50"	5.50"	5.50"	12865	18125	5130	6407	31264	Blocking
 Blocking Papels are assumed to carry no load 	Placking Papels are assumed to early no loads applied directly above them and the full load is applied to the member being designed								

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 11"	N/A	45.0				
1 - Uniform (PLF)	0 to 15' 11"	N/A	140.3	373.5	-	-	Linked from: Main Truss 1, Support 2
2 - Uniform (PLF)	0 to 15' 11"	N/A	132.0	351.8	-	-	Linked from: Main Truss 4, Support 1
3 - Point (lb)	9'	N/A	11806	9460	7057	8815	Linked from: Upper Post 2, Support 1
4 - Point (lb)	14' 8"	N/A	3863	7423	1191	1487	Linked from: Upper Post 3, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Main, Main Beam 3 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

Overall Length: 11' 6"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

					T
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5816 @ 4"	12856 (5.50")	Passed (45%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4468 @ 1' 4"	10203	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	14839 @ 5' 9"	20213	Passed (73%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.235 @ 5' 9"	0.271	Passed (L/552)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.328 @ 5' 9"	0.542	Passed (L/396)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 10' 10".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.49"	1646	4170	5816	Blocking
2 - Stud wall - SPF	5.50"	5.50"	2.49"	1646	4170	5816	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	11' 6" o/c						
Bottom Edge (Lu) 11' 6" o/c							
•Maximum allowable bracing intervals based on applied load							

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 6"	N/A	14.0		
1 - Uniform (PLF)	0 to 11' 6" (Front)	N/A	140.3	373.5	Linked from: Main Truss 1, Support 2
2 - Uniform (PLF)	0 to 11' 6" (Front)	N/A	132.0	351.8	Linked from: Main Truss 4, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Job Notes

PASSED

Main, Main Beam 4 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4774 @ 4"	12856 (5.50")	Passed (37%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3656 @ 1' 4"	10203	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	12038 @ 5' 8 5/16"	20213	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.190 @ 5' 8 3/4"	0.271	Passed (L/686)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.265 @ 5' 8 13/16"	0.542	Passed (L/490)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 10' 10".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.04"	1361	3413	4774	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.71"	1146	2842	3988	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	11' 6" o/c				
Bottom Edge (Lu)	11' 6" o/c				
Maximum allowable bracing intervals based on applied load					

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 6"	N/A	14.0		
1 - Uniform (PLF)	0 to 9' 8" (Front)	N/A	132.0	351.8	Linked from: Main Truss 4, Support 2
2 - Uniform (PLF)	0 to 11' 6" (Front)	N/A	93.0	248.3	Linked from: Main Truss 5, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Main, Main Beam 6 2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1740 @ 4"	8750 (4.00")	Passed (20%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	819 @ 1' 7 1/2"	9310	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	2116 @ 2' 11 1/2"	24258	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.009 @ 2' 11 1/2"	0.131	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.012 @ 2' 11 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	4.00"	1.50"	395	1420	1815	1 1/2" Rim Board
2 - Column - DF	5.50"	4.00"	1.50"	395	1420	1815	1 1/2" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 8" o/c	
Bottom Edge (Lu)	5' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 5' 9 1/2"	N/A	14.3		
1 - Uniform (PSF)	0 to 5' 11" (Front)	8'	15.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Main, Main Header 1 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2054 @ 2"	7963 (3.50")	Passed (26%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1540 @ 1' 1/2"	5565	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	3943 @ 4' 2"	9450	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.060 @ 4' 2"	0.200	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.119 @ 4' 2"	0.400	Passed (L/809)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8'.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1019	1034	2054	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1019	1034	2054	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 4" o/c	
Bottom Edge (Lu)	8' 4" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 4"	N/A	7.7		
1 - Uniform (PLF)	0 to 8' 4"	N/A	144.0		Default Load
2 - Uniform (PLF)	0 to 8' 4"	N/A	93.0	248.3	Linked from: Main Truss 5, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Allen Rishel	
(206) 641-1733	
allen@nkhengineering.com	

Main, Main Header 2 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3699 @ 15' 9"	12513 (3.50")	Passed (30%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3379 @ 14' 7 1/2"	11660	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	14396 @ 11' 3"	26400	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.203 @ 8' 8 15/16"	0.390	Passed (L/923)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.402 @ 8' 5 9/16"	0.779	Passed (L/465)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 15' 7".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1474	739	307	2258	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1767	1819	757	3699	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 11" o/c	
Bottom Edge (Lu)	15' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 11"	N/A	16.0			
1 - Uniform (PLF)	0 to 15' 11"	N/A	144.0	-	-	Floor
2 - Point (Ib)	11' 3"	N/A	693	2558	1064	Linked from: Upper Header 4, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Main, Main Header 3 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5388 @ 2"	12513 (3.50")	Passed (43%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4080 @ 1' 1/2"	8745	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	10682 @ 4' 3 1/2"	14850	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.132 @ 4' 3 1/2"	0.206	Passed (L/747)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.218 @ 4' 3 1/2"	0.412	Passed (L/455)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.51"	2108	3280	801	5388	None
2 - Trimmer - SPF	3.50"	3.50"	1.51"	2108	3280	801	5388	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	12.0			
1 - Uniform (PLF)	0 to 8' 7"	N/A	288.0	-	-	Floor
2 - Uniform (PLF)	0 to 8' 7"	N/A	191.3	764.3	186.8	Linked from: Main Truss 3, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Main, Main Header 4 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3325 @ 2"	7963 (3.50")	Passed (42%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2421 @ 1' 1/2"	5565	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	6338 @ 4' 3 1/2"	9450	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.137 @ 4' 3 1/2"	0.206	Passed (L/720)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.211 @ 4' 3 1/2"	0.412	Passed (L/469)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1159	2037	850	3325	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1159	2037	850	3325	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	7.7			
1 - Uniform (PLF)	0 to 8' 7"	N/A	144.0	-	-	Floor
2 - Uniform (PLF)	0 to 8' 7"	N/A	118.5	474.8	198.0	Linked from: Main Truss 6, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Main, Main Header 5 2 piece(s) 2 x 6 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1822 @ 2"	6563 (3.50")	Passed (28%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1059 @ 9"	1980	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1342 @ 1' 9 1/2"	1475	Passed (91%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.024 @ 1' 9 1/2"	0.081	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.038 @ 1' 9 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	690	1131	1822	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	690	1131	1822	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 7" o/c	
Bottom Edge (Lu)	3' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 7"	N/A	4.2		
1 - Uniform (PLF)	0 to 3' 7"	N/A	144.0	-	Floor
2 - Uniform (PLF)	0 to 3' 7"	N/A	140.3	373.5	Linked from: Main Truss 1, Support 2
3 - Uniform (PLF)	0 to 3' 7"	N/A	96.8	258.0	Linked from: Main Truss 2, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Allen Rishel
NKH Engineering
(206) 641-1733
allen@nkhengineering.com

Main, Main Header 6 1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL

Overall Length: 12' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7874 @ 4"	12272 (5.50")	Passed (64%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	5893 @ 1' 7 1/2"	14210	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	22870 @ 6' 5 1/2"	40743	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.201 @ 6' 5 1/2"	0.267	Passed (L/730)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.266 @ 6' 5 1/2"	0.267	Passed (L/552)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/550) and TL (L/550).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	3.53"	1921	5953	7874	Blocking
2 - Stud wall - SPF	5.50"	5.50"	3.53"	1921	5953	7874	Blocking
Blocking Panels are assumed to carry no load	c applied dire	ctly above the	m and the ful	Lload is appli	od to the mor	nhor hoing d	ocianod

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 11" o/c	
Bottom Edge (Lu)	12' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 11"	N/A	23.0		
1 - Uniform (PSF)	0 to 12' 11" (Back)	9' 6"	15.0	60.0	Deck
2 - Uniform (PLF)	0 to 12' 11" (Front)	N/A	132.0	351.8	Linked from: Main Truss 4, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	
0 0	

Main, Main Header 7 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	10477 @ 2"	12513 (3.50")	Passed (84%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	8529 @ 1' 6 1/2"	14575	Passed (59%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	41707 @ 8' 3 1/2"	41096	Passed (101%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.431 @ 8' 3 1/2"	0.542	Passed (L/453)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.712 @ 8' 3 1/2"	0.813	Passed (L/274)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 16' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	2.93"	4140	6337	1548	10477	None
2 - Trimmer - SPF	3.50"	3.50"	2.93"	4140	6337	1548	10477	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6" o/c	
Bottom Edge (Lu)	16' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 7"	N/A	20.0			
1 - Uniform (PLF)	0 to 16' 7"	N/A	288.0	-	-	Floor
2 - Uniform (PLF)	0 to 16' 7"	N/A	191.3	764.3	186.8	Linked from: Main Truss 3, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

I	ForteWEB Software Operator
1	Allen Rishel
	NKH Engineering
1	(206) 641-1733
â	allen@nkhengineering.com

Main, Main Wall 1

1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12'

Member Height: 11' 7 1/2"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	2730	5432	Passed (50%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2730	4383	Passed (62%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	112			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	103	1584	Passed (7%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	326 @ mid-span	1342	Passed (24%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	1.16	Passed (L/836)		1.0 D + 0.6 W
Bending/Compression	0.56	1	Passed (56%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

· Lateral deflection criteria: Wind (L/120)

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

				_
Supports	Туре		Material	System : Wall
Тор	Dbl 2X		Spruce-Pine-Fir	Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD
Base	2X		Spruce-Pine-Fir	
Max Unbraced Length		Comments]
				7

Drawing is Conceptual

Lateral Connections								
Connector	Type/Model	Quantity	Connector Nailing					
Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A					
Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A					
	Connector Nails Nails	Connector Type/Model Nails 8d (0.113" x 2 1/2") (Toe) Nails 8d (0.113" x 2 1/2") (Toe)	Connector Type/Model Quantity Nails 8d (0.113" x 2 1/2") (Toe) 2 Nails 8d (0.113" x 2 1/2") (Toe) 2					

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (PLF)	16.00"	288.0	-	-	-	
2 - Point (PLF)	16.00"	174.0	-	232.5	290.3	Linked from: Roof Truss 1, Support 2
3 - Point (PLF)	16.00"	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 2
4 - Point (PLF)	16.00"	191.3	764.3	-	186.8	Linked from: Main Truss 3, Support 2

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	24.1	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Main, Main Wall 2 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12'

Member Height: 11' 7 1/2"

O. C. Spacing: 16.00"

PASSED

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	3048	5304	Passed (57%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	3048	4383	Passed (70%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	112			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	103	1584	Passed (7%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	326 @ mid-span	1342	Passed (24%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	1.16	Passed (L/836)		1.0 D + 0.6 W
Bending/Compression	0.65	1	Passed (65%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

· Lateral deflection criteria: Wind (L/120)

Input axial load eccentricity for the design is zero

• Applicable calculations are based on NDS.

• A bearing area factor of 1.25 has been applied to base plate bearing capacity.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Type Dbl 2X		Material	System : Wall
Тор			Spruce-Pine-Fir	Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD
Base	2X		Spruce-Pine-Fir	
			-	
Max Unbraced Length			Comments	
1'				

Drawing is Conceptual

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (PLF)	16.00"	288.0	-	-	-	
2 - Point (PLF)	16.00"	150.8	-	201.8	252.0	Linked from: Roof Truss 1, Support 1
3 - Point (PLF)	16.00"	92.3	-	134.3	168.0	Linked from: Roof Truss 3, Support 2
4 - Point (PLF)	16.00"	100.5	268.5	-	-	Linked from: Upper Truss 1, Support 1
5 - Point (PLF)	16.00"	141.0	376.5	-	-	Linked from: Upper Truss 2, Support 2
6 - Point (PLF)	16.00"	140.3	373.5	-	-	Linked from: Main Truss 1, Support 2
7 - Point (PLF)	16.00"	96.8	258.0	-	-	Linked from: Main Truss 2, Support 1

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	24.1	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area Ascerse: 7 Sec. 30.1. Exposes Sec. 27, (27, 4)
determined using full member span and trib. width.
IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

Main, Main Post 1 1 piece(s) 6 x 6 DF No.2

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (39%)		
Compression (lbs)	15790	16909	Passed (93%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	15790	898425	Passed (2%)		1.0 D + 1.0 L
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material		
Base	Plate		Steel		
Max Unbraced Length			Comments		
Full Member Length		No bracing assumed.			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Vertical Loads	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (Ib)	3424	3281	308	385	Linked from: Main Beam 1, Support 1
2 - Point (lb)	4823	4262	1217	1520	Linked from: Main Beam 1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Allen Rishel	
NKH Engineering	
(206) 641-1733	
allen@nkhengineering.com	

MEMBER REPORT

Main, Main Post 2

1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL

Post Height: 9'

Ţ

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	21	50	Passed (41%)		
Compression (lbs)	18156	42272	Passed (43%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	18502	818606	Passed (2%)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length			No bracing assumed.	

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Floor Live	Roof Live	Snow	
Vertical Load	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (lb)	7854	10302	3118	3895	Linked from: Main Beam 2, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com

Job Notes

MEMBER REPORT

Main, Main Post 3

1 piece(s) 3 1/2" x 9 1/4" 2.2E Parallam® PSL

Actual

Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Special detailing and installation procedures are necessary for large wall construction.

FAILED POST IS LET THROUGH BOTTOM PLATE FOR DIRECT POST BASE **BEARING**

Wall Height: 8'

Design Results

Supports

Тор

Dee

Lateral deflection criteria: Wind (L/120)

· Applicable calculations are based on NDS. · Initial eccentricity applied as per ESR-1387. Member Height: 7' 7 1/2"

Allowed Result

Tributary Width: 1'

Dosignitiosunts					
Slenderness	8	50	Passed (17%)		
Compression (lbs)	36806	91355	Passed (40%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	36806	20234	Failed (182%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	58			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	46	10015	Passed (0%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	111 @ mid-span	19795	Passed (1%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.06 @ mid-span	0.76	Passed (L/1521)		1.0 D + 0.45 W + 0.75 L + 0.75 S
Bending/Compression	0.63	1	Passed (63%)	1.00	1.0 D + 1.0 L

• Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Material

Douglas Fir-Larch

Drawing is Conceptual

Dase	27		Douyias Fil-Laich	
Max Unbraced Length			Comments	
1'				

Туре

Dbl 2X

~ ` '

Member Type : Column Building Code : IBC 2018 Design Methodology : ASD

System : Wall

LDE Load: Combination

Lateral Connections							
Supports	Connector	Type/Model	Quantity	Connector Nailing			
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A			

• Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (lb)	N/A	12865	18125	5130	6407	Linked from: Main Beam 2, Support 2
2 - Point (lb)	N/A	1646	4170	-	-	Linked from: Main Beam 3, Support 1

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	25.5	

 ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Allen Rishel NKH Engineering (206) 641-1733 allen@nkhengineering.com	

FOUNDATION DESIGN FOR PROPERTY LOCATED AT 3804 Mercer Way Mercer Island WA 98040

Basis of Design

This document is showing the detail of design and calculations of foundation for gravity loads according to IRC 2018, IBC 2018, ASCE7-16, and ACI 318-14.

The load distribution is as follow:

15 psf
15 psf
40 psf
20 psf
25 psf
60 psf
15 psf

The maximum bearing pressure on soil was considered at least 1500 psf. Concrete strength is assumed to be at least 2500 psi

Material Properties for Design

f _c := 2500psi	Concrete compressive strength
f _y ≔ 60·ksi	Yield strength of rebar
f _{soil.bearing} := 1500psf	Minimum soil bearing capacity
$\gamma_{\text{concrete}} \coloneqq 150 \text{pcf}$	Concrete unit weight
$\gamma_{steel} \coloneqq 490 pcf$	Steel unit weight

E_s := 29000ksi

Young modulus of steel

 $E_{c} := 57000 \cdot \sqrt{\frac{f_{c}}{psi}} \cdot psi = 2.85 \times 10^{3} \cdot ksi$ Young modulus of concrete (ACI-318-14)

Load Assumptions

$LL_{floor} := 40 psf$	Floor live load
DL _{floor} := 15psf	Floor dead load
$DL_{roof} := 15psf$	Roof dead load
$LL_{roof} := 20 psf$	Roof live load
$SL_{roof} := 25psf$	Roof snow load

Check Bearing Capacity of Foundation

Project Location: For 3804 Mercer Way Mercer Island WA 98040

$$F_{wall} := 3048 \frac{lbf}{16in}$$
 Axial load on wall per stud-from ForteWeb

$$W_{found} := 20in$$
 Foundation size

 $d_f := 10in$

Thickness of foundation

$$\frac{F_{wall} + W_{found} \cdot d_{f} \cdot \gamma_{concrete}}{W_{found}} = 1.497 \times 10^{3} \cdot psf$$

OK less than 1500 psf

Check the one way shear:

$$V_{f} := 1.6 \cdot \frac{F_{wall}}{W_{found}} \cdot \left(\frac{W_{found}}{2}\right) = 1.829 \times 10^{3} \cdot \text{plf}$$

$$\Phi V_{c} := 0.75 \cdot 2 \cdot \sqrt{\frac{f_{c}}{\text{psi}}} \cdot \left(d_{f} - 3\text{in}\right) \cdot \text{psi} = 6.3 \times 10^{3} \cdot \text{plf}$$

$$\frac{V_{f}}{\Phi V_{c}} = 0.29$$
Less than 1.0 OK
$$\frac{0.0018 \cdot W_{found} \cdot d_{f}}{0.2\text{in}^{2}} = 1.8$$
Use 2#4 rebar

LIC# : KW-06013860, Build:20.23.08.30

DESCRIPTION: Footing @ Main Post 1

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

Material	Prope	rties			
f'c : C	concrete	2.	50 ksi		
fy : R	ebar Yi	=	60).0 ksi	
Éc: C	Concret	e Elastic Modulus	=	3,122	2.0 ksi
Conc	rete De	nsity	=	145	5.0 pcf
_φ Va	alues	Flexure	=	0.	90
		Shear	=	0.7	50
Analysis	s Settin	igs			
Min S	Steel %	Bending Reinf.		=	
Min A	llow %	Temp Reinf.		=	0.00180
Min. (Overtur	ning Safety Factor		=	1.0:1
Min. S	Sliding \$	Safety Factor		=	1.0:1
Add F	tg Wt f		:	Yes	
Use f	tg wt fo	s & shears	:	Yes	
Add F	Pedesta	ure	:	No	
Use F	Pedesta	I wt for stability, mo	om & shear	:	No

Soil Design Values		
Allowable Soil Bearing	=	1.50 ksf
Soil Density	=	110.0 pcf
Increase Bearing By Footing Weight	=	Yes
Soil Passive Resistance (for Sliding)	=	250.0 pcf
Soil/Concrete Friction Coeff.	=	0.30
Increases based on footing Depth		
Footing base depth below soil surface	=	ft
Allow press. increase per foot of depth	=	ksf
when footing base is below	=	ft
Increases based on footing plan dimension	n vth	
Allowable pressure increase per loot of dep		kof
when max length or width is greater than	=	KSI
when max long it of what to greater than	=	ft
	_	

Dimensions

Width parallel to X-X Axis	=	3.50 ft
Length parallel to Z-Z Axis	=	3.50 ft
Footing Thickness	=	12.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	=	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

5

Z-Z Section Looking to +X

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	5.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size	= =	#	5.0 4
Bandwidth Distribution Ch Direction Requiring Closer	eck (ACI 15 Separation	5.4.4.2)	
	·		n/a
# Bars required within zone	9		n/a
# Bars required on each sid	le of zone		n/a

Bars required on each side of zone

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	8.247	1.525	7.543	1.905			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

X-X Section Looking to +Z

3

NKH Engineering

Project File: Foundations.ec6

(c) ENERCALC INC 1983-2023

LIC# : KW-06013860, Build:20.23.08.30

DESCRIPTION: Footing @ Main Post 1

DESIGN SUMMARY

Project Title:	3804 House
Engineer:	NKH
Project ID:	22-112
Project Descr:	

(c) ENERCALC INC 1983-2023

DESIGN S	UMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.8717	Soil Bearing	1.434 ksf	1.645 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2572	Z Flexure (+X)	2.865 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.2572	Z Flexure (-X)	2.865 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.2572	X Flexure (+Z)	2.865 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.2572	X Flexure (-Z)	2.865 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.2344	1-way Shear (+X)	17.582 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.2344	1-way Shear (-X)	17.582 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.2344	1-way Shear (+Z)	17.582 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.2344	1-way Shear (-Z)	17.582 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.4487	2-way Punching	67.310 psi	150.0 psi	+1.20D+1.60L+0.50S
Detailed R	esults				

NKH Engineering

Soil Bearing

Rotation Axis &		X	ecc Ze		Actua	I Soil Bearing Str	ess @ Lo	cation	Actual / Allov
Load Combination	Gross Allowa	ble	(in)	Bottom	i, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.645		n/a	0.0 0.8	182	0.8182	n/a	n/a	0.497
X-X, +D+L	1.645		n/a	0.0 1.4	434	1.434	n/a	n/a	0.872
X-X, +D+Lr	1.645		n/a	0.0 0.94	427	0.9427	n/a	n/a	0.573
X-X, +D+S	1.645		n/a	0.0 0.9	737	0.9737	n/a	n/a	0.592
X-X, +D+0.750Lr+0.750L	1.645		n/a	0.0 1.3	373	1.373	n/a	n/a	0.835
X-X, +D+0.750L+0.750S	1.645		n/a	0.0 1.3	397	1.397	n/a	n/a	0.849
X-X, +0.60D	1.645		n/a	0.0 0.49	909	0.4909	n/a	n/a	0.298
Z-Z, D Only	1.645		0.0	n/a	n/a	n/a	0.8182	0.8182	0.497
Z-Z, +D+L	1.645		0.0	n/a	n/a	n/a	1.434	1.434	0.872
Z-Z, +D+Lr	1.645		0.0	n/a	n/a	n/a	0.9427	0.9427	0.573
Z-Z, +D+S	1.645		0.0	n/a	n/a	n/a	0.9737	0.9737	0.592
Z-Z, +D+0.750Lr+0.750L	1.645		0.0	n/a	n/a	n/a	1.373	1.373	0.835
Z-Z, +D+0.750L+0.750S	1.645		0.0	n/a	n/a	n/a	1.397	1.397	0.849
Z-Z, +0.60D	1.645		0.0	n/a	n/a	n/a	0.4909	0.4909	0.298
Overturning Stability									
Rotation Axis &		Overt	urning Mou	mont		Posisting Momon	• 6+-	bility Patio	Status
		Overti		nem	ſ	Resisting Momen	1 318		Status
Sliding Stability								A	ll units k
Force Application Axis Load Combination		Sli	ding Force	9		Resisting Force	Sta	bility Ratio	Status
Footing Has NO Sliding			-			-		-	
Footing Flexure									
Flexure Axis & Load Combinatio	on Mu k-ft	Side	Tension Surface	As Req'o in^2	b	Gvrn. As A in^2	ctual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	1.443	+Z	Bottom	0.2592		AsMin	0.2857	11.139	ок
X-X. +1.40D	1.443	-Z	Bottom	0.2592		AsMin	0.2857	11.139	OK
X-X, +1.20D+0.50Lr+1.60L	2.841	+Z	Bottom	0.2592		AsMin	0.2857	11.139	OK
X-X, +1.20D+0.50Lr+1.60L	2.841	-Z	Bottom	0.2592		AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60L+0.50S	2.865	+Z	Bottom	0.2592		AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60L+0.50S	2.865	-Z	Bottom	0.2592		AsMin	0.2857	11.139	OK
X-X. +1.20D+1.60Lr+L	2.485	+Z	Bottom	0.2592		AsMin	0.2857	11.139	OK
X-X. +1.20D+1.60Lr+L	2.485	-Z	Bottom	0.2592		AsMin	0.2857	11.139	OK
$X-X_{1} + 1.20D + 1.60L r$	1 542	+7	Bottom	0 2592		AsMin	0.2857	11 139	OK
X-X + 1.20D+1.60Lr	1 542	-7	Bottom	0 2592		AsMin	0 2857	11 139	OK
X-X +1 20D+L+1 60S	2.561	+7	Bottom	0 2592		AsMin	0 2857	11 139	OK
	2.001		Dottom	0.2002		/ (0)/////	0.2007	11.100	0.0

LIC# : KW-06013860, Build:20.23.08.30

DESCRIPTION: Footing @ Main Post 1

Project File: Foundations.ec6

(c) ENERCALC INC 1983-2023

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	s Actual As in^2	Phi*M k-fi	<i>l</i> in	Status
X-X, +1,20D+I +1,60S	2,561	-7	Bottom	0.2592	AsMin	0.2857	11	139	ок
X-X +1 20D+1 60S	1 618	+7	Bottom	0 2592	AsMin	0 2857	11	139	OK
X-X +1 20D+1 60S	1 618	-7	Bottom	0.2592	AsMin	0 2857	11	139	OK
X-X, +1.20D+0.50l r+l	2.275	+7	Bottom	0.2592	AsMin	0.2857	11	139	OK
X-X, +1.20D+0.50l r+l	2.275	-7	Bottom	0.2592	AsMin	0.2857	11	139	OK
X-X, +1.20D+L+0.50S	2,299	+7	Bottom	0.2592	AsMin	0.2857	11	139	OK
X-X, +1.20D+L+0.50S	2,299	-7	Bottom	0.2592	AsMin	0.2857	11	139	OK
X-X, +0.90D	0.9278	+7	Bottom	0.2592	AsMin	0.2857	11	139	OK
X-X, +0.90D	0.9278	-7	Bottom	0.2592	AsMin	0.2857	11	139	OK
X-X, +1.20D+L+0.20S	2.228	+7	Bottom	0.2592	AsMin	0.2857	11	139	OK
X-X, +1.20D+L+0.20S	2.228	-Z	Bottom	0.2592	AsMin	0.2857	11	139	OK
7-7, +1,40D	1,443	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.40D	1.443	+X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+0.50Lr+1.60L	2.841	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+0.50Lr+1.60L	2.841	+X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+1.60L+0.50S	2.865	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+1.60L+0.50S	2.865	+X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+1.60Lr+L	2.485	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+1.60Lr+L	2.485	+X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+1.60Lr	1.542	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+1.60Lr	1.542	+X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+L+1.60S	2.561	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+L+1.60S	2.561	+X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+1.60S	1.618	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+1.60S	1.618	+X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+0.50Lr+L	2.275	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+0.50Lr+L	2.275	+X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+L+0.50S	2.299	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +1.20D+L+0.50S	2.299	+X	Bottom	0.2592	AsMin	0.2857	11	139	OK
Z-Z, +0.90D	0.9278	-X	Bottom	0.2592	AsMin	0.2857	11	.139	ОК
Z-Z, +0.90D	0.9278	+X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+L+0.20S	2.228	-X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+L+0.20S	2.228	+X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @	₽+X Vu	@-Z Vu	@ +Z	Vu:Max Ph	iVn Vu	/ Phi*Vn	Status
+1.40D	8.86 ps	si	8.86 psi	8.86 psi	8.86 psi	8.86 psi	75.00 psi	0.12	OK
+1.20D+0.50Lr+1.60L	17.44 ps	si	17.44 psi	17.44 psi	17.44 psi	17.44 psi	75.00 psi	0.23	OK
+1.20D+1.60L+0.50S	17.58 ps	si	17.58 psi	17.58 psi	17.58 psi	17.58 psi	75.00 psi	0.23	OK
+1.20D+1.60Lr+L	15.25 ps	si	15.25 psi	15.25 psi	15.25 psi	15.25 psi	75.00 psi	0.20	OK
+1.20D+1.60Lr	9.46 ps	si	9.46 psi	9.46 psi	9.46 psi	9.46 psi	75.00 psi	0.13	OK
+1.20D+L+1.60S	15 72 ps	si	15.72 psi	15.72 psi	15.72 psi	15.72 psi	75.00 psi	0.21	OK
+1 20D+1 60S	0 03 ps	si	9 93 nsi	9 93 psi	9 93 nsi	9 93 nsi	75.00 psi	0.13	OK
+1.20D+0.50l r+l	13 06 ps	si	13.96 psi	13.96 psi	13.96 psi	13.96 psi	75.00 psi	0.19	OK
+1 20D+1 +0 50S	14 11 00	si Si	14.11 psi	14.11 pei	14 11 pei	14 11 pei	75.00 psi	0.10	
+0.00D	14.11 pa	51 51	5 60 poi	5 60 poi	5 60 poi	5 60 poi	75.00 psi	0.13	
+0.90D	5.69 ps	>I .:	0.09 psi	0.09 psi	5.69 psi	12.67 psi	75.00 psi	0.08	
+1.20D+L+0.205	13.67 ps	51	13.67 psi	13.67 psi	13.67 psi	13.67 psi	75.00 psi	0.18	UN
Two-way "Punching" Shear								All units	К
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		33.9	91 psi	150.00p	si	0.2261			OK
+1.20D+0.50Lr+1.60L		66.	75 psi	150.00p	si	0.445			OK
+1.20D+1.60L+0.50S		67.	31 psi	150.00p	si	0.4487			OK
+1.20D+1.60Lr+L		58.	39 psi	150.00p	si	0.3892			OK
+1.20D+1.60Lr		36.	23 psi	150.00p	si	0.2416			OK
+1.20D+L+1.60S		60.	17 psi	150.00p	si	0.4011			OK
+1.20D+1.60S		38.	02 psi	150.00p	si	0.2535			OK
+1.20D+0.50Lr+L		53.4	46 psi	150.00p	si	0.3564			OK
+1.20D+L+0.50S		54.	02 psi	150.00p	si	0.3601			OK
+0.90D		21.	80 psi	150.00p	si	0.1453			OK
+1.20D+L+0.20S		52.3	34 psi	150.00p	SI	0.3489			OK

NKH Engineering

LIC# : KW-06013860, Build:20.23.08.30

DESCRIPTION: Footing @ Main Post 2

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

Mate	rial Prope	rties			
f'c	: Concrete	=	2.5	50 ksi	
fy :	: Rebar Yi	eld	=	60	.0 ksi
Éc	: Concret	e Elastic Modulus	=	3,122	.0 ksi
Co	ncrete De	nsity	=	145	.0 pcf
Φ	Values	Flexure	=	0.9	90
		Shear	=	0.75	50
Analy	sis Settir	ngs			
Mi	n Steel %	Bending Reinf.		=	
Mi	n Allow %	Temp Reinf.		=	0.00180
Mi	n. Overtur	ning Safety Factor		=	1.0:1
Mi	n. Sliding	Safety Factor		=	1.0:1
Ad	d Ftg Wt f	or Soil Pressure		:	Yes
Us	e ftg wt fo	& shears	:	Yes	
Ad	d Pedesta	al Wt for Soil Pressu	re	:	No
Us	e Pedesta	al wt for stability, mo	m & shear	:	No

Soil Design Values Allowable Soil Bearing	=	1.50 ksf
Soil Density	=	110.0 pcf
Increase Bearing By Footing Weight	=	Yes
Soil Passive Resistance (for Sliding)	=	250.0 pcf
Soil/Concrete Friction Coeff.	=	0.30
Increases based on footing Depth		
Footing base depth below soil surface	=	ft
Allow press. increase per foot of depth	=	ksf
when footing base is below	=	ft
Increases based on footing plan dimensi Allowable pressure increase per foot of de	on epth	
when max. length or width is greater than	=	ksf
C C	=	ft

Dimensions

Width parallel to X-X Axis	=	3.50 ft
Length parallel to Z-Z Axis	=	3.50 ft
Footing Thickness	=	12.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	=	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	5 4
Bars parallel to Z-Z Axis			
Number of Bars	=		5
Reinforcing Bar Size	=	#	4
Bandwidth Distribution C	heck (ACI 15	.4.4.2)	
Direction Requiring Closer	Separation		
			n/a
# Bars required within zon	е		n/a
# Bars required on each sig	de of zone		n/a

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	7.814	3.161	10.111	3.948			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

3

NKH Engineering

Project File: Foundations.ec6

(c) ENERCALC INC 1983-2023

LIC# : KW-06013860, Build:20.23.08.30

DESCRIPTION: Footing @ Main Post 2

DESIGN SUMMARY

Project Title:	3804 House
Engineer:	NKH
Project ID:	22-112
Project Descr:	

Project File: Foundations.ec6

(c) ENERCALC INC 1983-2023

DESIGN S	UMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9994	Soil Bearing	1.644 ksf	1.645 ksf	+D+0.750L+0.750S about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.3089	Z Flexure (+X)	3.441 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.3089	Z Flexure (-X)	3.441 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.3089	X Flexure (+Z)	3.441 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.3089	X Flexure (-Z)	3.441 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.2816	1-way Shear (+X)	21.120 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.2816	1-way Shear (-X)	21.120 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.2816	1-way Shear (+Z)	21.120 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.2816	1-way Shear (-Z)	21.120 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.5390	2-way Punching	80.852 psi	150.0 psi	+1.20D+1.60L+0.50S
Detailed R	esults				

NKH Engineering

Soil Bearing

Rotation Axis &		Xe	ecc Zec	c Ac t	ual Soil Bearin	ng Stress @ Lo	ocation	Actual / Allow
Load Combination	Gross Allowat	ole	(in)	Bottom, -	Z Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.645		n/a C	.0 0.782	9 0.7829	n/a	n/a	0.476
X-X, +D+L	1.645		n/a 0	.0 1.60	B 1.608	n/a	n/a	0.978
X-X, +D+Lr	1.645		n/a 0	.0 1.04	1 1.041	n/a	n/a	0.633
X-X, +D+S	1.645		n/a 0	.0 1.10	5 1.105	n/a	n/a	0.672
X-X, +D+0.750Lr+0.750L	1.645		n/a 0	.0 1.59	5 1.595	n/a	n/a	0.970
X-X, +D+0.750L+0.750S	1.645		n/a 0	.0 1.64	4 1.644	n/a	n/a	0.999
X-X, +0.60D	1.645		n/a 0	.0 0.469	7 0.4697	n/a	n/a	0.286
Z-Z, D Only	1.645		0.0 n	/a n/	a n/a	0.7829	0.7829	0.476
Z-Z, +D+L	1.645		0.0 n	/a n/	a n/a	1.608	1.608	0.978
Z-Z, +D+Lr	1.645		0.0 n	/a n/	a n/a	1.041	1.041	0.633
Z-Z, +D+S	1.645		0.0 n	/a n/	a n/a	1.105	1.105	0.672
Z-Z, +D+0.750Lr+0.750L	1.645		0.0 n	/a n/	a n/a	1.595	1.595	0.970
Z-Z, +D+0.750L+0.750S	1.645		0.0 n	/a n/	a n/a	1.644	1.644	0.999
Z-Z, +0.60D	1.645		0.0 n	/a n/	a n/a	0.4697	0.4697	0.286
Overturning Stability								
Rotation Axis &								
Load Combination		Overtu	rning Morr	ent	Resisting M	oment Sta	ability Ratio	Status
Sliding Stability							A	II units k
Force Application Axis								
Load Combination		Slie	ding Force		Resisting F	Resisting Force Stability		Status
Footing Has NO Sliding								
ooting Flexure								
Flexure Axis & Load Combination	on Mu	Side	Tension	As Req'd	Gvrn. As	Actual As	Phi*Mn	Status
	K-TT		Surrace	In ^r 2	IN'2	In ^r 2	K-ft	
X-X, +1.40D	1.367	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.40D	1.367	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+0.50Lr+1.60L	3.392	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+0.50Lr+1.60L	3.392	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60L+0.50S	3.441	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60L+0.50S	3.441	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr+L	3.068	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr+L	3.068	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr	1.804	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr	1.804	-Z	Bottom	0.2592	AsMin	0.2857	11.139	ОК
X-X. +1.20D+L+1.60S	3.226	+Z	Bottom	0.2592	AsMin	0.2857	11.139	ОК

LIC# : KW-06013860, Build:20.23.08.30

DESCRIPTION: Footing @ Main Post 2

Project Title:3804 HouseEngineer:NKHProject ID:22-112Project Descr:

Project File: Foundations.ec6

(c) ENERCALC INC 1983-2023

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. A in^2	s Actual As in^2	Phi*l k-f	Vin t	Status
X-X. +1.20D+L+1.60S	3.226	-Z	Bottom	0.2592	AsMin	0.2857	11	.139	ОК
X-X, +1.20D+1.60S	1.962	+Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
X-X, +1.20D+1.60S	1.962	-Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
X-X, +1.20D+0.50Lr+L	2.634	+Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
X-X, +1.20D+0.50Lr+L	2.634	-Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
X-X, +1.20D+L+0.50S	2.683	+Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
X-X, +1.20D+L+0.50S	2.683	-Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
X-X, +0.90D	0.8791	+Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
X-X, +0.90D	0.8791	-Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
X-X, +1.20D+L+0.20S	2.535	+Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
X-X, +1.20D+L+0.20S	2.535	-Z	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.40D	1.367	-X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.40D	1.367	+X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+0.50Lr+1.60L	3.392	-X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+0.50Lr+1.60L	3.392	+X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+1.60L+0.50S	3.441	-X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+1.60L+0.50S	3.441	+X	Bottom	0.2592	Asiviin	0.2857	11	.139	OK
Z-Z, +1.20D+1.60Lr+L	3.068	- ^	Bottom	0.2592	Asiviin	0.2857	11	.139	OK
Z-Z, +1.20D+1.60Lf+L	3.068	+^	Bottom	0.2592	Asiviin	0.2857	11	.139	OK
Z - Z, +1.20D+1.60Li	1.004	-^	Bottom	0.2592	Asiviin	0.2007	11	139	OK
Z - Z, +1.20D+1.00L1 7 7 +1.20D+1.1.60S	2 226	+^	Bottom	0.2092	Asiviiri	0.2007	11	120	OK
$Z-Z$, $\pm 1.20D\pm L\pm 1.60S$	3.220	-~	Bottom	0.2592	AsMin	0.2007	11	130	OK
7_7 +1 20D+1 60S	1 962		Bottom	0.2592	AsMin	0.2007	11	130	OK
7-7 +1 20D+1 60S	1.902	-^ +X	Bottom	0.2592	AsMin	0.2007	11	139	OK
7-7 + 1.20D + 0.50l r + l	2 634	-X	Bottom	0.2592	AsMin	0.2857	11	139	OK
7-7, +1.20D+0.50Lr+L	2.634	+X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+L+0.50S	2.683	-X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+L+0.50S	2.683	+X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +0.90D	0.8791	-X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +0.90D	0.8791	+X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+L+0.20S	2.535	-X	Bottom	0.2592	AsMin	0.2857	11	.139	OK
Z-Z, +1.20D+L+0.20S	2.535	+X	Bottom	0.2592	AsMin	0.2857	11	.139	ОК
One Way Shear									
Load Combination	Vu @ -X	Vu @	₽+X Vu	@ -Z Vu	@ +Z	Vu:Max Ph	iVn Vu	/ Phi*Vn	Status
+1.40D	8.39 ps	si .	8.39 psi	8.39 psi	8.39 psi	8.39 psi	75.00 psi	0.11	OK
+1.20D+0.50Lr+1.60L	20.82 ps	și –	20.82 psi	20.82 psi	20.82 psi	20.82 psi	75.00 psi	0.28	OK
+1.20D+1.60L+0.50S	21.12 ps	si	21.12 psi	21.12 psi	21.12 psi	21.12 psi	75.00 psi	0.28	OK
+1.20D+1.60Lr+L	18.83 ps	si	18.83 psi	18.83 psi	18.83 psi	18.83 psi	75.00 psi	0.25	OK
+1.20D+1.60Lr	11.07 ps	si	11.07 psi	11.07 psi	11.07 psi	11.07 psi	75.00 psi	0.15	OK
+1.20D+L+1.60S	19.80 ps	si	19.80 psi	19.80 psi	19.80 psi	19.80 psi	75.00 psi	0.26	OK
+1.20D+1.60S	12.04 ps	si	12.04 psi	12.04 psi	12.04 psi	12.04 psi	75.00 psi	0.16	OK
+1.20D+0.50Lr+L	16.16 ps	i	16.16 psi	16.16 psi	16.16 psi	16.16 psi	75.00 psi	0.22	OK
+1.20D+L+0.50S	16.47 ps	si	16.47 psi	16.47 psi	16.47 psi	16.47 psi	75.00 psi	0.22	OK
+0.90D	5.40 ps	i	5.40 psi	5.40 psi	5.40 psi	5.40 psi	75.00 psi	0.07	OK
+1.20D+L+0.20S	15.56 ps	si 🛛	15.56 psi	15.56 psi	15.56 psi	15.56 psi	75.00 psi	0.21	OK
Two-Way "Punching" Shear								All units	k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		32.	13 psi	150.00 n	si	0.2142			ОК
+1.20D+0.50Lr+1.60L		79.	70 psi	150.00	si	0.5313			OK
+1.20D+1.60L+0.50S		80.	85 psi	150.00p	si	0.539			ОК
+1.20D+1.60Lr+L		72.	09 psi	150.00p	si	0.4806			ОК
+1.20D+1.60Lr		42.	39 psi	150.00 p	si	0.2826			ОК
+1.20D+L+1.60S		75.	79 psi	150.00 p	si	0.5053			ОК
+1.20D+1.60S		46.	09 psi	150.00 p	si	0.3073			ОК
+1.20D+0.50Lr+L		61.	88 psi	150.00 p	si	0.4125			ОК
+1.20D+L+0.50S		63.	03 psi	150.00p	si	0.4202			OK
+0.90D		20.	66 psi	150.00 p	si	0.1377			ОК
+1.20D+L+0.20S		59.	56 psi	150.00 p	si	0.397			ОК

NKH Engineering

LIC# : KW-06013860, Build:20.23.08.30

NKH Engineering

ft

ft in Project File: Foundations.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Footing @ Main Post 3

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

=	2.5	50 ksi
=	60	.0 ksi
=	3,122	.0 ksi
=	145	.0 pcf
=	0.9	90
=	0.75	50
	=	
	=	0.00180
	=	1.0:1
	=	1.0 : 1
	:	Yes
ears	:	Yes
	:	No
hear	:	No
	= = = = ears	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Soil Design Values Allowable Soil Bearing	=	1.50 ksf
Soil Density	=	110.0 pcf
Increase Bearing By Footing Weight	=	No
Soil Passive Resistance (for Sliding)	=	250.0 pcf
Soil/Concrete Friction Coeff.	=	0.30
Increases based on footing Depth		
Footing base depth below soil surface	=	ft
Allow press. increase per foot of depth	=	ksf
when footing base is below	=	ft
Increases based on footing plan dimension Allowable pressure increase per foot of dep	n oth	
when max. length or width is greater than	=	ksf
5 0	=	ft

Dimensions

Width parallel to X-X Axis	=	5.330
Length parallel to Z-Z Axis	=	5.330
Footing Thickness	=	14.0

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	-	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	9 4
Bars parallel to Z-Z Axis			•
Number of Bars	=		9
Reinforcing Bar Size	=	#	4
Bandwidth Distribution Ch	neck (ACI 15	.4.4.2)	
Direction Requiring Closer	Separation		
			n/a
# Bars required within zone	Э		n/a
# Bars required on each sid	te of zone		n/a
Bars paraller to 2-2 Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Ch Direction Requiring Closer # Bars required within zone # Bars required on each sig	= = neck (ACI 15 Separation e de of zone	# .4.4.2)	9 4 n/a n/a

Applied Loads

		D	Lr	L	S	W	E	н
P : Column Load OB : Overburden	=	14.650	5.10	22.730	6.40			k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

LIC# : KW-06013860, Build:20.23.08.30

DESCRIPTION: Footing @ Main Post 3

IGN S	UMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.990	Soil Bearing	1.485 ksf	1.50 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.4433	Z Flexure (+X)	7.144 k-ft/ft	16.113 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.4433	Z Flexure (-X)	7.144 k-ft/ft	16.113 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.4433	X Flexure (+Z)	7.144 k-ft/ft	16.113 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.4433	X Flexure (-Z)	7.144 k-ft/ft	16.113 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.3574	1-way Shear (+X)	26.805 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.3574	1-way Shear (-X)	26.805 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.3574	1-way Shear (+Z)	26.805 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.3574	1-way Shear (-Z)	26.805 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.7617	2-way Punching	114.249 psi	150.0 psi	+1.20D+1.60L+0.50S

NKH Engineering

Detailed Results

Soil Bearing								
Rotation Axis &	Gross Allowa	Xe	ecc Zec (in)	c Ac Bottom -	tual Soil Bearin 7 Top +7	ng Stress @ Lo / left -X	Right +X	Actual / Allow Ratio
	1 50		n/o (0 0 6940		night, 17	0.457
	1.50		n/a C	0.004	9 0.0048 5 1.495	n/a	n/a	0.437
	1.50		n/a C	0 0.40	A 0.8644) 11/a I n/a	n/a	0.990
	1.50		n/a (0.004	1 0.0044	n/a	n/a	0.570
X-X, +D+0 7501 r+0 7501	1.00		n/a (0 142	0 1 4 2 0) n/a	n/a	0.007
X-X, +D+0.750L+0.750S	1.00		n/a C	0 145	4 1 454	, n/a	n/a	0.969
X-X +0.60D	1.50		n/a C	0 0 410	9 0 4 1 0 9	n/a	n/a	0.000
7-7. D Only	1.50		0.0 r	n/a n/	a n/a	0.6849	0.6849	0.457
Z-Z, +D+I	1.50		0.0 r	n/a n/	a n/a	1.485	1.485	0.990
Z-Z, +D+Lr	1.50		0.0 r	n/a n/	'a n/a	0.8644	0.8644	0.576
Z-Z, +D+S	1.50		0.0 r	n/a n/	'a n/a	0.9101	0.9101	0.607
Z-Z, +D+0.750Lr+0.750L	1.50		0.0 r	n/a n/	'a n/a	1.420	1.420	0.947
Z-Z. +D+0.750L+0.750S	1.50		0.0 r	a n	′a n/a	1.454	1.454	0.969
Z-Z, +0.60D	1.50		0.0 r	n/a n/	′a n/a	0.4109	0.4109	0.274
Overturning Stability								
Rotation Axis &								
Load Combination		Overtu	Irning Mon	nent	Resisting M	oment St	ability Ratio	Status
Footing Has NO Overturning								
Sliding Stability							A	ll units k
Force Application Axis								
Load Combination		Sli	ding Force		Resisting	Force St	ability Ratio	Status
Footing Has NO Sliding								
Footing Flexure								
Flexure Axis & Load Combinatio	on Mu	Side	Tension	As Req'd	Gvrn. As	Actual As	Phi*Mn	Status
	k-ft		Surface	in^2	in^2	in^2	k-ft	
X-X, +1.40D	2.564	+Z	Bottom	0.3024	AsMin	0.3377	16.113	ОК
X-X, +1.40D	2.564	-Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+0.50Lr+1.60L	7.062	+Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+0.50Lr+1.60L	7.062	-Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60L+0.50S	7.144	+Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60L+0.50S	7.144	-Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60Lr+L	6.059	+Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60Lr+L	6.059	-Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60Lr	3.218	+Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60Lr	3.218	-Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
	6 319	+Z	Bottom	0.3024	AsMin	0.3377	16.113	OK

Project File: Foundations.ec6

(c) ENERCALC INC 1983-2023

Project Title:	3804 House
Engineer:	NKH
Project ID:	22-112
Project Descr:	

General Footing LIC# : KW-06013860, Build:20.23.08.30

NKH Engineering

Project File: Foundations.ec6

(c) ENERCALC INC 1983-2023

DESCRIPTION: Footing @ Main Post 3

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	s Actual As in^2	Phi*N k-ft	In	Status
X-X. +1.20D+L+1.60S	6.319	-Z	Bottom	0.3024	AsMin	0.3377	16.	113	ок
X-X, +1.20D+1.60S	3.478	+7	Bottom	0.3024	AsMin	0.3377	16.	113	OK
X-X. +1.20D+1.60S	3.478	-Z	Bottom	0.3024	AsMin	0.3377	16.	113	OK
X-X, +1.20D+0.50Lr+L	5.358	+Z	Bottom	0.3024	AsMin	0.3377	16.	113	OK
X-X, +1.20D+0.50Lr+L	5.358	-Z	Bottom	0.3024	AsMin	0.3377	16.	113	OK
X-X, +1.20D+L+0.50S	5.439	+Z	Bottom	0.3024	AsMin	0.3377	16.	113	OK
X-X. +1.20D+L+0.50S	5.439	-Z	Bottom	0.3024	AsMin	0.3377	16.	113	OK
X-X, +0.90D	1.648	+Z	Bottom	0.3024	AsMin	0.3377	16.	113	OK
X-X, +0.90D	1.648	-Z	Bottom	0.3024	AsMin	0.3377	16.	113	OK
X-X, +1.20D+L+0.20S	5.199	+Z	Bottom	0.3024	AsMin	0.3377	16.	113	OK
X-X, +1.20D+L+0.20S	5.199	-Z	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.40D	2.564	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.40D	2.564	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+0.50Lr+1.60L	7.062	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+0.50Lr+1.60L	7.062	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+1.60L+0.50S	7.144	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+1.60L+0.50S	7.144	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+1.60Lr+L	6.059	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+1.60Lr+L	6.059	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+1.60Lr	3.218	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+1.60Lr	3.218	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+L+1.60S	6.319	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+L+1.60S	6.319	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+1.60S	3.478	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+1.60S	3.478	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z. +1.20D+0.50Lr+L	5.358	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+0.50Lr+L	5.358	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+L+0.50S	5.439	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z, +1.20D+L+0.50S	5.439	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z. +0.90D	1.648	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
Z-Z. +0.90D	1.648	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
7-7, +1.20D+L+0.20S	5,199	-X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
7-7, +1.20D+L+0.20S	5,199	+X	Bottom	0.3024	AsMin	0.3377	16.	113	OK
One Way Shear	0.100	.,,	20110111	0.002	, 101111	0.0011			•
Load Combination	Vu @ -X	Vu @	+X Vu	@-Z Vu	@ +Z \	/u:Max Phi	iVn Vu	/ Phi*Vn	Status
+1.40D	9.62 ps	si	9.62 psi	9.62 psi	9.62 psi	9.62 psi	75.00 psi	0.13	OK
+1.20D+0.50Lr+1.60L	26.50 ps	si	26.50 psi	26.50 psi	26.50 psi	26.50 psi	75.00 psi	0.35	OK
+1.20D+1.60L+0.50S	26.81 ps	si	26.81 psi	26.81 psi	26.81 psi	26.81 psi	75.00 psi	0.36	ОК
+1.20D+1.60l r+l	22 74 ps	si	22.74 psi	22.74 psi	22.74 psi	22.74 psi	75.00 psi	0.30	OK
+1 20D+1 60Lr	12 07 09	si	12.07 psi	12.07 psi	12.07 psi	12.07 psi	75.00 psi	0.16	OK
+1 20D+I +1 60S	12.07 pc	si	23 71 pei	23 71 pei	23 71 pei	23.71 psi	75.00 psi	0.10	
+1.20D+1.605	23.710	51 51	12 05 poi	12 05 poi	23.71 psi	12 05 poi	75.00 psi	0.52	
+1.20D+1.003	13.05 pt	51 .:	13.05 psi	13.05 psi	13.05 psi	13.05 psi	75.00 psi	0.17	
+1.20D+0.30LI+L	20.10 ps	51	20.10 psi	20.10 psi	20.10 psi	20. 10 psi	75.00 psi	0.27	UK OK
+1.20D+L+0.50S	20.41 ps	51	20.41 psi	20.41 psi	20.41 psi	20.41 psi	75.00 psi	0.27	OK
+0.90D	6.18 ps	51	6.18 psi	6.18 psi	6.18 psi	6.18 psi	75.00 psi	0.08	OK
+1.20D+L+0.20S	19.51 ps	si	19.51 psi	19.51 psi	19.51 psi	19.51 psi	75.00 psi	0.26	OK
Two-Way "Punching" Shear								All units	k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		41.0	00 psi	150.00p	osi	0.2734			OK
+1.20D+0.50Lr+1.60L		112.9	95 psi	150.00 p	osi	0.753			OK
+1.20D+1.60L+0.50S		114.2	25 psi	150.00 p	osi	0.7617			OK
+1.20D+1.60Lr+L		96.9	90 psi	150.00p	osi	0.646			OK
+1.20D+1.60Lr		51.4	16 psi	150.00 p	osi	0.3431			OK
+1.20D+L+1.60S		101.0	06 psi	150.00 p	osi	0.6737			OK
+1.20D+1.60S		55.6	62 psi	150.00 p	osi	0.3708			OK
+1.20D+0.50Lr+L		85.6	69 psi	150.00 p	osi	0.5712			OK
+1.20D+L+0.50S		86.9	98 psi	150.00 p	osi	0.5799			OK
+0.90D		26.3	36 psi	150.00p	osi	0.1757			OK
+1.20D+L+0.20S		83.1	I5 psi	150.00 p	osi	0.5543			OK

Design of 10 ft Retaining Wall

t _{wall} := 8in	Thickness of wall						
$t_{foun} := 10in$	Thickness of foundation						
$L_{toe} := 1 \text{ ft} + 10 \text{ in} = 1.83$	3-ft	Total foundation length					
$h_{key} := 0 ft$	Height of key						
$t_{key} := 0$ in	Thickness of key						
$L_{heel} := 1 ft + 6 in$	Heel length						
t _{gr_slab} ≔ 4in	Thickness of slab on gra foundation	ade on top of wall					
h _{wall} := 10ft	Height of the wall						
$\mathbf{I} := \frac{1}{12} \cdot \left(\mathbf{L}_{\text{toe}} + \mathbf{L}_{\text{heel}} + \mathbf{I}_{\text{heel}} + \mathbf{I}_{\text{heel}} \right)$	$(t_{wall})^3 = 5.333 \cdot \frac{ft^4}{ft}$	Moment inertia of wall base					
f _c := 2500psi	Concrete compressive s	strength					
f _y := 60ksi	Steel yield strength						
E _s := 29000ksi	Steel young modulus						
$\gamma_c := 150 pcf$	Concrete unit weight						
$p_a := 40 pcf$	Active soil pressure						
$p_0 := 55pcf$	At-rest soil pressure						
$\Delta p_{eq} := 8 \left(\frac{h_{wall}}{ft} \right) \cdot psf =$	80·psf Seismic s	soil pressure					
$p_p := 200pcf$	Passive pressure						
PGA := 0.607							

$$\mu := 0.35$$
 Soil friction factor from IBC 2018

$$\phi := \frac{3}{2} \cdot \operatorname{atan}(\mu) = 28.935 \cdot \operatorname{deg}$$
 Equivalent friction angle

 $K_a := \frac{1 - \sin(\phi)}{1 + \sin(\phi)} = 0.348$ Active pressure coefficient

$$K_0 := 1 - \sin(\phi) = 0.516$$
 At-Rest pressure coefficient

$$\gamma_{soil} \coloneqq \frac{p_a}{K_a} = 114.984 \cdot pcf$$
 Soil unit weight

Vertical weight on wall

 $P_{d \text{ wall}} \coloneqq (h_{\text{wall}} - t_{\text{foun}}) \cdot t_{\text{wall}} \cdot \gamma_{c} = 916.667 \cdot \text{plf}$

 $P_{slab.on.found} := t_{gr_slab} \cdot \gamma_c \cdot L_{toe} = 91.667 \cdot plf$

$$P_{d_found} := (L_{toe} + t_{wall} + L_{heel}) \cdot t_{foun} \cdot \gamma_{c} = 500 \cdot plf \qquad Concrete weight of foundation$$

 $P_{d_key} := (h_{key} - t_{foun}) \cdot t_{key} \cdot \gamma_c = 0 \cdot plf$

Concrete weight of key

$$P_{d_slab} := t_{gr_slab} \cdot (44ft) \cdot \gamma_c + 5psf \cdot 44ft + 0.6 \left(3919 \frac{lbf}{16in} + 2092 \frac{lbf}{16in} + 1507 \frac{lbf}{16in}\right) = 5.803 \times 10^3 \cdot p$$

Concrete weight of slab and dead load on grade

Weight of concrete slab on wall foundation

Live load on slab

Surcharge pressure on wall due to live load on patio

 $P_{ll .surch} := 60 psf \cdot K_a = 20.872 \cdot psf$

 P_d .surch := $0 \cdot t_{gr}$ slab $\cdot \gamma_c \cdot K_a = 0 \cdot psf$

 $P_{ll} := 0psf \cdot (L_{toe}) = 0 \cdot plf$

Check Sliding Capacity for Dead Load

Lateral earth force from active pressure

Bending Moment

$$M_A = -q L^2 / 15$$
 (3a)

where

 M_A = moment at the fixed end (Nm, lb_f ft)

q = continuous declining load (N/m, Ib_f/ft)

$$M_1 = q \, L^2 \,/\, 33.6 \tag{3b}$$

where

 M_1 = maximum moment at x = 0.553 L (Nm, $lb_f ft$)

Deflection

$$\bar{o}_{max} = q L^4 / (419 E I)$$
 (3c)

where

 \bar{o}_{max} = max deflection at x = 0.553 L (m, ft)

$$\bar{o}_{1/2} = q L^4 / (427 E I)$$
 (3d)

where

 $\delta_{1/2}$ = deflection at x = L / 2 (m, ft)

Support Reactions

$$R_A = 2 \ q \ L \ / \ 5$$
 (3e)

$$R_B = q L / 10$$
 (3f)

$$F_{d} \coloneqq \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} + 5 \cdot \frac{P_{d_surch} \cdot \left(h_{wall} - t_{gr_slab}\right)}{8} = 2.056 \times 10^{3} \cdot plf$$

Resisting force

$$F_{res} := P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} \dots = 8.743 \times 10^{3} \cdot \text{plf} + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$$

F	It is more than or
$\frac{1}{1} = 1.5$	equal 1.5
Fd	

Check Sliding Capacity for Seismic Load

Lateral earth force from active pressure

$$F_{d} := \frac{2}{5} \cdot p_{a} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} + \frac{5}{8} \cdot P_{d_surch} \cdot \left(h_{wall} - t_{gr_slab}\right) \dots = 2.048 \times 10^{3} \cdot \text{plf}$$

$$+ \frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right) + \left(\frac{P_{d_wall}}{2} + P_{d_found} + P_{d_key}\right) \cdot PGA \cdot \frac{1}{2}$$
Resisting Force 1.4

$$F_{res} := P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} \dots = 8.743 \times 10^{3} \text{ plf} + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$$

$$\frac{0.9F_{res} \cdot \mu + \frac{1}{2}p_p \cdot \left(h_{key}\right)^2}{F_d} = 1.345$$

It is more than 1.0

Check Overturning Capacity for Dead Load

Lateral moment about toe due to soil pressure

$$\begin{split} \mathbf{M}_{\mathbf{d}} &\coloneqq \frac{1}{15} \cdot \mathbf{p}_{\mathbf{o}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{3} + \frac{2}{5} \cdot \mathbf{p}_{\mathbf{o}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{2} \cdot \left(\mathbf{h}_{\mathbf{key}}\right) \dots &= 3.312 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}} \\ &+ \frac{\mathbf{P}_{\mathbf{d_surch}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{2}}{8} + \frac{5}{8} \cdot \mathbf{P}_{\mathbf{d_surch}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right) \cdot \mathbf{h}_{\mathbf{key}} \end{split}$$

Resisting moment

$$\begin{split} \mathbf{M}_{\text{res}} &\coloneqq \mathbf{P}_{\text{d}_\text{wall}} \cdot \left(\mathbf{L}_{\text{toe}} + \frac{\mathbf{t}_{\text{wall}}}{2} \right) + \mathbf{P}_{\text{d}_\text{found}} \cdot \left(\frac{\mathbf{L}_{\text{toe}} + \mathbf{t}_{\text{wall}} + \mathbf{L}_{\text{heel}}}{2} \right) \dots &= 8.022 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}} \\ &+ \mathbf{P}_{\text{d}_\text{key}} \cdot \frac{\mathbf{t}_{\text{key}}}{2} + \mathbf{P}_{\text{slab.on.found}} \cdot \frac{\mathbf{L}_{\text{toe}}}{2} \dots \\ &+ \mathbf{L}_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(\mathbf{h}_{\text{wall}} - \mathbf{t}_{\text{gr}_\text{slab}} - \mathbf{t}_{\text{foun}} \right) \cdot \left(\frac{\mathbf{L}_{\text{heel}}}{2} + \mathbf{t}_{\text{wall}} + \mathbf{L}_{\text{toe}} \right) \end{split}$$

$$\frac{M_{res}}{M_d} = 2.422$$
 It is more than 1.5

Check Overturning Capacity for Seismic Load

Lateral moment about toe due to soil pressure

$$\begin{split} \mathsf{M}_{d} &\coloneqq \frac{1}{15} \cdot \mathsf{p}_{a} \cdot \left(\mathsf{h}_{wall} - \mathsf{t}_{gr_slab}\right)^{3} + \frac{2}{5} \cdot \mathsf{p}_{a} \cdot \left(\mathsf{h}_{wall} - \mathsf{t}_{gr_slab}\right)^{2} \cdot \left(\mathsf{h}_{key}\right) \dots \\ &+ \frac{\mathsf{P}_{d_surch} \cdot \left(\mathsf{h}_{wall} - \mathsf{t}_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \mathsf{P}_{d_surch} \cdot \left(\mathsf{h}_{wall} - \mathsf{t}_{gr_slab}\right) \cdot \mathsf{h}_{key} \dots \\ &- \frac{\Delta \mathsf{p}_{eq} \cdot \left(\mathsf{h}_{wall} - \mathsf{t}_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \Delta \mathsf{p}_{eq} \cdot \left(\mathsf{h}_{wall} - \mathsf{t}_{gr_slab}\right) \cdot \mathsf{h}_{key} \dots \\ &+ \frac{+ \left[\frac{\mathsf{P}_{d_wall}}{2} \cdot \left(\frac{\mathsf{h}_{wall}}{2} - \mathsf{t}_{foun}\right) + \mathsf{P}_{d_found} \cdot \frac{\mathsf{t}_{foun}}{2} + \mathsf{P}_{d_key} \cdot \frac{\mathsf{h}_{key}}{2}\right] \cdot \mathsf{PGA} \cdot \frac{1}{2}}{1.4} \\ &- M_{d} = 3.535 \cdot \frac{\mathsf{kip} \cdot \mathsf{ft}}{\mathsf{ft}} \end{split}$$

Resisting moment

$$\begin{split} M_{res} &\coloneqq P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) \dots = 8.022 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} \dots \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$\frac{0.9 \cdot M_{res}}{M_d} = 2.042$$
 It is more than 1.1

Check Overturning Capacity for Dead and Live Load

Lateral moment about toe due to soil pressure

$$\begin{split} \mathbf{M}_{\mathbf{d}} &\coloneqq \frac{1}{15} \cdot \mathbf{p}_{\mathbf{o}} \cdot \left(\mathbf{h}_{\text{wall}} - \mathbf{t}_{\text{gr_slab}} \right)^{3} + \frac{2}{5} \cdot \mathbf{p}_{\mathbf{o}} \cdot \left(\mathbf{h}_{\text{wall}} - \mathbf{t}_{\text{gr_slab}} \right)^{2} \cdot \left(\mathbf{h}_{\text{key}} \right) \dots \\ &+ \frac{\left(\mathbf{P}_{\underline{d_}.\text{surch}} + \mathbf{P}_{\underline{ll_}.\text{surch}} \right) \cdot \left(\mathbf{h}_{\text{wall}} - \mathbf{t}_{\underline{\text{gr_slab}}} \right)^{2}}{8} \dots \\ &+ \frac{5}{8} \cdot \left(\mathbf{P}_{\underline{d_}.\text{surch}} + \mathbf{P}_{\underline{ll_}.\text{surch}} \right) \cdot \left(\mathbf{h}_{\text{wall}} - \mathbf{t}_{\underline{\text{gr_slab}}} \right)^{2} \dots \\ & \mathbf{M}_{\underline{d}} = 3.556 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}} \end{split}$$

Resisting moment

M_d

$$\begin{split} M_{res} &\coloneqq P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) \dots = 8.022 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} \dots \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \\ \hline \frac{M_{res} + \frac{1}{4} p_p \cdot \left(h_{key} + t_{foun} - 4in \right)^3}{2} = 2.258 \end{split}$$
 It is more than 1.0

Check Soil Bearing Pressure for DL+LL

$$M_{d} := \frac{1}{15} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} \dots + \frac{\left(P_{d_surch} + P_{ll_surch}\right) \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8}$$

$$\begin{split} M_{\text{res}} &:= P_{d_\text{wall}} \cdot \left(L_{\text{toe}} + \frac{t_{\text{wall}}}{2} \right) + P_{d_\text{found}} \cdot \left(\frac{L_{\text{toe}} + t_{\text{wall}} + L_{\text{heel}}}{2} \right) \dots = 8.022 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}} \\ &+ P_{d_\text{key}} \cdot \frac{t_{\text{key}}}{2} + P_{\text{slab.on.found}} \cdot \frac{L_{\text{toe}}}{2} \dots \\ &+ L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{\text{gr}_\text{slab}} - t_{\text{foun}} \right) \cdot \left(\frac{L_{\text{heel}}}{2} + t_{\text{wall}} + L_{\text{toe}} \right) \end{split}$$

 $L_{base} := L_{toe} + t_{wall} + L_{heel}$

$$P := P_{d_wall} + P_{d_found} + P_{d_key} + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$$

$$\left|\frac{M_{res} - M_d}{P} - \frac{\left(L_{toe} + t_{wall} + L_{heel}\right)}{2}\right| = 0.481 \cdot ft$$
 Eccentricity

$$\frac{L_{base}}{6} = 0.667 \cdot ft$$

Eccentricity is within 1/3 of base so base is always in compression

_

$$\begin{split} \sigma_{\text{toe}} &\coloneqq \frac{P_{d_wall} + P_{d_found} + P_{d_key} + L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)}{L_{\text{toe}} + t_{wall} + L_{\text{heel}}} \dots \\ &+ \frac{M_{d} \cdot 0.5 \cdot L_{\text{base}}}{I} - \frac{P_{d_wall} \cdot \left(\frac{L_{\text{base}}}{2} - t_{wall} - L_{\text{heel}}\right) \cdot 0.5 L_{\text{base}}}{I} \dots \\ &+ \frac{P_{d_key} \cdot \left(\frac{L_{\text{base}}}{2} - \frac{t_{key}}{2}\right) \cdot \left(0.5 L_{\text{base}}\right)}{I} + \frac{P_{\text{slab.on.found}} \cdot \left(\frac{L_{\text{base}}}{2} - \frac{L_{\text{toe}}}{2}\right) \cdot \left(0.5 L_{\text{base}}\right)}{I} \dots \\ &+ \frac{-L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{\text{base}}}{2} - \frac{L_{\text{heel}}}{2}\right) \cdot 5 L_{\text{base}}}{I} \dots \\ &+ \frac{I - \frac{L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{\text{base}}}{2} - \frac{L_{\text{heel}}}{2}\right) \cdot 5 L_{\text{base}}}{I} \\ \end{split}$$

 $\sigma_{\text{toe}} = 1.449 \times 10^3 \cdot \text{psf}$ Less than 1500 psf OK

$$\begin{split} \sigma_{heel} &\coloneqq \frac{P_{d_wall} + P_{d_found} + P_{d_key} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)}{L_{toe} + t_{wall} + L_{heel}} \dots \\ &+ \frac{-M_{d} \cdot 0.5 \cdot L_{base}}{I} - \frac{-P_{d_wall} \cdot \left(\frac{L_{base}}{2} - t_{wall} - L_{heel}\right) \cdot 0.5 L_{base}}{I} \dots \\ &+ \frac{-P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} - \frac{P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} + \frac{L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2}\right) \cdot .5 L_{base}}{I} \end{split}$$

 $\sigma_{\text{heel}} = 21.222 \cdot \text{psf}$ Less than 1500 psf OK

Check Soil Bearing Pressure for Seismic

$$\begin{split} \mathbf{M}_{\mathbf{d}} &\coloneqq \frac{1}{15} \cdot \mathbf{p}_{\mathbf{0}} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{3} + \frac{2}{5} \cdot \mathbf{p}_{\mathbf{0}} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2} \cdot \left(\mathbf{h}_{key}\right) \dots \\ &+ \frac{\mathbf{P}_{\mathbf{d}_surch} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \mathbf{P}_{\mathbf{d}_surch} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right) \cdot \mathbf{h}_{key} \dots \\ &- \frac{\Delta \mathbf{p}_{eq} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \Delta \mathbf{p}_{eq} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right) \cdot \mathbf{h}_{key} \dots \\ &+ \frac{\left|\frac{\mathbf{P}_{\mathbf{d}_wall}}{2} \cdot \left(\frac{\mathbf{h}_{wall}}{2} - \mathbf{t}_{foun}\right)\right| + \mathbf{P}_{\mathbf{d}_found} \cdot \frac{\mathbf{t}_{foun}}{2} + \mathbf{P}_{\mathbf{d}_key} \cdot \frac{\mathbf{h}_{key}}{2}\right] \cdot \mathbf{P} \mathbf{G} \mathbf{A} \cdot \frac{1}{2}}{1.4} \\ &- \frac{\mathbf{M}_{\mathbf{d}} = 4.439 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}}} \end{split}$$

Resisting moment

$$\begin{split} M_{res} &:= P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) \dots = 8.022 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} \dots \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

 $P := P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$

$$e_{cc} \coloneqq \left| \frac{0.9 \cdot M_{res} + \frac{1}{4} p_p \cdot (h_{key} + t_{foun} - 1 \text{ ft})^3 - M_d}{P} - \frac{L_{base}}{2} \right| = 1.682 \cdot \text{ft}$$
 Eccentricity

$$\frac{L_{base}}{2} = 2 \cdot ft$$
 The resultant is within base

Moment about centroid of foundation

$$M_{\text{center}} \coloneqq M_{d} - P_{d_wall} \cdot \left(\frac{L_{\text{base}}}{2} - t_{\text{wall}} - L_{\text{heel}}\right) + P_{d_key} \cdot \left(\frac{L_{\text{base}}}{2} - \frac{t_{key}}{2}\right) \dots + P_{\text{slab.on.found}} \cdot \left(\frac{L_{\text{base}}}{2} - \frac{L_{\text{toe}}}{2}\right) - L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{\text{gr_slab}} - t_{\text{foun}}\right) \cdot \left(\frac{L_{\text{base}}}{2} - \frac{L_{\text{heel}}}{2}\right) M_{\text{center}} = 2.786 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$$

Axial load on center of foundation

$$P_{center} := P_{d_wall} + P_{d_found} + P_{d_key} + P_{slab.on.found} + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$$

$$P_{center} = 3.032 \cdot \frac{kip}{ft}$$

$$\sigma_{toe} = 1.87 \times 10^3 \cdot \text{psf}$$

Maximum bearing pressure on soil due to seismic is less than 1.3x1500= 1950 psf per IBC OK

Project Location: For 3804 Mercer Way Mercer Island WA 98040

Check for Shear and Moment Capacity

Wall Shear and Moment Capacity

$$A_{s.min.wall} := 0.0018 \cdot t_{wall} \cdot 12 in = 0.173 \cdot in^2$$
 Provide at least #4@12

Shear Capacity ACI-318

$$\phi V_c := 0.75 \cdot 2 \cdot \sqrt{\frac{|f_c|}{psi}} \cdot psi \cdot (t_{wall} - 3in) = 4.5 \cdot \frac{kip}{ft}$$
 Shear Capacity

$$\phi M_{cap_base} := 0.9 \cdot f_y \cdot 0.2 \frac{in^2}{ft} \cdot \frac{12}{8} \cdot \left(0.9 \cdot \frac{t_{wall}}{2}\right) = 4.86 \cdot \frac{kip \cdot ft}{ft} \qquad \text{Moment capacity of wall}$$
at the base #4@8"

$$\phi M_{cap_mid} \coloneqq 0.9 \cdot f_y \cdot 0.2 \frac{in^2}{ft} \cdot \frac{12}{8} \cdot \left(0.9 \cdot \frac{t_{wall}}{2} \right) = 4.86 \cdot \frac{kip \cdot ft}{ft}$$
 Moment capacity of wall at the middle #4@12"

$$\varphi V_{c} = 4.5 \cdot \frac{kip}{ft}$$

Shear capacity of wall

Calculate Demand on Base of Wall (1.4DL+1.6LL+1.6EH)

$$M := 1.6 \frac{1}{15} \cdot p_0 \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^3 \dots = 4.369 \cdot kip \cdot \frac{ft}{ft}$$
$$+ \frac{\left(1.2 \cdot P_d_surch + 1.6 \cdot P_{ll_surch}\right) \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^2}{8}$$

$$M = 4.369 \cdot kip$$

Moment capacity is more than demand moment on wall-OK

23 of 43

$$V := 1.6 \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right)^{2} \dots$$

+ $\frac{5}{8} \cdot \left(1.2 \cdot P_{d_surch} + 1.6 \cdot P_{ll_surch}\right) \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right)$

$$V = 2.518 \cdot \frac{\text{kip}}{\text{ft}}$$

 $\frac{V}{\phi V_{c}} = 55.958.\%$

Shear capacity is more than demand moment on wall-OK

Calculate Demand on Base Wall (1.2DL+1.0LL+1.6EH+1.0EQ)

$$M := 1.6 \frac{1}{15} \cdot p_a \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^3 \dots$$

$$+ \frac{1.2 \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^2}{8} \dots$$

$$+ \frac{\Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^2}{8} \dots$$

$$+ \left[\frac{1.2P_{d_wall}}{2} \cdot \left(\frac{h_{wall}}{2} - t_{foun}\right)\right] \cdot \frac{PGA}{2} \dots$$

$$M = 4.417 \cdot kip$$

OK

 $\frac{M}{\phi M_{cap}base} = 90.876.\%$

V

$$= 1.6\frac{2}{5} \cdot p_{a} \cdot (h_{wall} - t_{gr_slab} - t_{foun} - t_{wall})^{2} + 1.2\frac{5}{8} \cdot P_{d_surch} \cdot (h_{wall} - t_{gr_slab} - t_{foun} - t_{wall})$$

$$+ \frac{5}{8} \cdot \Delta p_{eq} \cdot (h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}) + \left(\frac{1.2P_{d_wall}}{2}\right) \cdot \frac{PGA}{2}$$

$$V = 2.283 \cdot \frac{kip}{ft}$$

$$Shear capacity is more than demand moment on wall-OK$$

 $A_{smin.wall} \coloneqq 0.0018 \cdot t_{wall} \cdot 12in = 0.173 \cdot in^2$

Ok use #4@8" vertical and horizontal

Project Location: For 3804 Mercer Way Mercer Island WA 98040

Toe Foundation Shear and Moment Capacity

Toe Foundation Shear and Moment Capacity

 $A_{smin.found.L} := \frac{0.0018 \cdot t_{foun} \cdot L_{base}}{0.2in^2} = 4.32$

Provide 5-#4 rebar longitudinal

 $A_{\text{smin.found.T}} \coloneqq \frac{0.0018 \cdot t_{\text{foun}} \cdot 10in}{0.2in^2} = 0.9$

Provide- #4@10" rebar transverse

Shear Capacity ACI-318

$$\phi V_{c} := 0.75 \cdot 2 \cdot \sqrt{\frac{|f_{c}|}{psi}} \cdot psi \cdot (t_{foun} - 3in) = 6.3 \cdot \frac{kip}{ft}$$

Shear Capacity

Moment capacity of wall

$$\phi M_{cap} := 0.9 \cdot f_{y} \cdot \left(0.2 \frac{in^{2}}{ft} \cdot \frac{12}{10} \right) \cdot \left(0.9 \cdot \frac{t_{foun}}{2} \right) = 4.86 \cdot \frac{kip \cdot ft}{ft}$$

$$\phi V_c = 6.3 \cdot \frac{kip}{ft}$$

Shear capacity of wall

Calculate demand on toe under soil pressure (1.2DL+1.6LL+1.6EH)

Moment about centroid of foundation

$$M_{d} \coloneqq 1.6 \frac{1}{15} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} \dots$$
$$+ \frac{\left(1.2 \cdot P_{d_.surch} + 1.6 \cdot P_{ll_.surch}\right) \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8}$$

$$\begin{split} \mathsf{M}_{\text{center}} &\coloneqq \mathsf{M}_{d} - 1.2\mathsf{P}_{d_\text{wall}} \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \mathsf{t}_{\text{wall}} - \mathsf{L}_{\text{heel}}\right) + 1.2\mathsf{P}_{d_\text{key}} \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \frac{\mathsf{t}_{\text{key}}}{2}\right) \dots \\ &+ 1.2 \cdot \mathsf{P}_{\text{slab.on.found}} \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \frac{\mathsf{L}_{\text{toe}}}{2}\right) \dots \\ &+ -1.2 \mathsf{L}_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(\mathsf{h}_{\text{wall}} - \mathsf{t}_{\text{gr_slab}} - \mathsf{t}_{\text{foun}}\right) \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \frac{\mathsf{L}_{\text{heel}}}{2}\right) \end{split}$$

 $M_{center} = 3.707 \cdot kip$

Axial load on center of foundation

 $\begin{array}{l} P_{center} \coloneqq 1.2P_{d_wall} + 1.2P_{d_found} + 1.2P_{d_key} + 1.2 \cdot P_{slab.on.found} \cdots \\ & + 1.6L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \end{array}$

$$P_{\text{center}} = 4.248 \cdot \frac{\text{kip}}{\text{ft}}$$

$$\frac{\max(|M_{\text{toe}}|, |M_{\text{heel}}|)}{\phi M_{\text{cap}}} = 71.163 \cdot \% \qquad \frac{\max(|V_{\text{toe}}|, |V_{\text{heel}}|)}{\phi V_{\text{c}}} = 33.976 \cdot \%$$

Calculate demand on toe under soil pressure (1.2DL+1.0LL+1.6EH+1.0EQ)

26 of 43

Moment about centroid of foundation

$$\begin{split} \mathbf{M}_{\mathbf{d}} &\coloneqq 1.6 \frac{1}{15} \cdot \mathbf{p}_{\mathbf{a}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}} \right)^{3} \cdots \\ &+ \frac{1.2 \cdot \mathbf{P}_{\mathbf{d_surch}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}} \right)^{2}}{8} \cdots \\ &+ \frac{\Delta \mathbf{p}_{\mathbf{eq}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}} \right)^{2}}{8} \cdots \\ &+ \left[\frac{1.2 \mathbf{P}_{\mathbf{d_wall}}}{2} \cdot \left(\frac{\mathbf{h}_{\mathbf{wall}}}{2} \right) \right] \cdot \mathbf{PGA} \end{split}$$

$$\begin{split} \mathsf{M}_{\text{center}} &\coloneqq \mathsf{M}_{d} - 1.2\mathsf{P}_{d_\text{wall}} \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \mathsf{t}_{\text{wall}} - \mathsf{L}_{\text{heel}} \right) + 1.2\mathsf{P}_{d_\text{key}} \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \frac{\mathsf{t}_{\text{key}}}{2} \right) \dots \\ &+ 1.2 \cdot \mathsf{P}_{\text{slab.on.found}} \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \frac{\mathsf{L}_{\text{toe}}}{2} \right) \dots \\ &+ -1.0\mathsf{L}_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(\mathsf{h}_{\text{wall}} - \mathsf{t}_{\text{gr}_\text{slab}} - \mathsf{t}_{\text{foun}} \right) \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \frac{\mathsf{L}_{\text{heel}}}{\mathsf{M}_{\text{center}}} \right) \\ &\text{Axial load on center of foundation} \end{split}$$

$$\begin{split} P_{center} &\coloneqq 1.2P_{d_wall} + 1.2P_{d_found} + 1.2P_{d_key} + 1.2 \cdot P_{slab.on.found} \cdots \\ &\quad + 1.6L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \end{split}$$

$$P_{center} = 4.248 \cdot \frac{kip}{ft}$$

$$\frac{max(|M_{toe}|, |M_{heel}|)}{\phi M_{cap}} = 87.114 \cdot \% \qquad \frac{max(|V_{toe}|, |V_{heel}|)}{\phi V_{c}} = 42.256 \cdot \% \quad OK$$

It is less than 5% Over EOR is OK

Design of 7 ft Retaining Wall

$$t_{wall} := 8in$$

Thickness of wall

$t_{foun} := 10in$	Thickness of foundation	
$L_{\text{toe}} \coloneqq 1 \text{ft} + 4 \text{in} = 1.333 \cdot$	ft	Total foundation length
h _{key} := 0ft	Height of key	
t _{key} := 0in	Thickness of key	
$L_{heel} := 1 ft$	Heel length	
tgr_slab := 4in	Thickness of slab on gra foundation	ade on top of wall
$h_{wall} := 7 ft$	Height of the wall	
$\mathbf{I} \coloneqq \frac{1}{12} \cdot \left(\mathbf{L}_{\text{toe}} + \mathbf{L}_{\text{heel}} + \mathbf{t} \right)$	$\left(\text{wall}\right)^3 = 2.25 \cdot \frac{\text{ft}^4}{\text{ft}}$	Moment inertia of wall base
f _c := 2500psi	Concrete compressive	strength
f _y := 60ksi	Steel yield strength	
E _s := 29000ksi	Steel young modulus	
$\gamma_c := 150 \text{pcf}$	Concrete unit weight	
$p_a := 40 pcf$	Active soil pressure	
$p_0 := 55pcf$	At-rest soil pressure	
$\Delta p_{eq} := 8 \left(\frac{h_{wall}}{ft} \right) \cdot psf =$	56-psf Seismic	soil pressure
$p_p := 200 pcf$	Passive pressure	
PGA := 0.607		
$\mu := 0.35$	Soil friction factor from IE	3C 2018
$\varphi := \frac{3}{2} \cdot \operatorname{atan}(\mu) = 28.935 \cdot$	deg Equivale	nt friction angle

Project Location: For 3804 Mercer Way Mercer Island WA 98040

$K_a := \frac{1 - \sin(\varphi)}{1 + \sin(\varphi)} = 0.348$ Active pressure c		ficient
$K_0 := 1 - \sin(\phi) = 0.516$	At-Rest pressure coe	efficient
$\gamma_{\text{soil}} \coloneqq \frac{p_a}{K_a} = 114.984 \cdot \text{pcf}$	Soil unit weight	. <i>.</i>
$P_{d_wall} := (h_{wall} - t_{foun}) \cdot t_{wall} \cdot \gamma_c = 61$	6.667·plf	Vertical weight on wall
$P_{d_{found}} := (L_{toe} + t_{wall} + L_{heel}) \cdot t_{four}$	$\gamma_{\rm c} = 375 \cdot {\rm plf}$	Concrete weight of foundation
$P_{d_key} := (h_{key} - t_{foun}) \cdot t_{key} \cdot \gamma_c = 0 \cdot plf$		Concrete weight of key
$P_{d_slab} := t_{gr_slab} \cdot (44ft) \cdot \gamma_c + 5psf \cdot 44ft$	$= 2.42 \times 10^3 \cdot \text{plf}$	
		Concrete weight of slab and dead load on grade
$P_{slab.on.found} := t_{gr_{slab}} \cdot \gamma_c \cdot L_{toe} = 66$.667∙plf	Weight of concrete slab on wall foundation
		Live load on slab
$P_{ll} := 0 psf \cdot (L_{toe}) = 0 \cdot plf$		Surcharge pressure on wall due to slab on grade
r_{d} .surch := $0.t$ gr_slab $\gamma_c \cdot \kappa_a = 0.pst$		Surcharge pressure on wall due to live load on patio
$P_{ll\surch} := 60psf \cdot K_a = 20.872 \cdot psf$		

Check Sliding Capacity for Dead Load

Lateral earth force from active pressure

Bending Moment

$$M_A = -q L^2 / 15$$
 (3a)

where

 M_A = moment at the fixed end (Nm, lb_f ft)

q = continuous declining load (N/m, Ib_f/ft)

$$M_1 = q \, L^2 \, / \, 33.6 \tag{3b}$$

where

 M_1 = maximum moment at x = 0.553 L (Nm, lb_f ft)

Deflection

$$\bar{o}_{max} = q L^4 / (419 E I)$$
 (3c)

where

 $\delta_{max} = max \ deflection \ at \ x = 0.553 \ L \ (m, \ ft)$

$$\delta_{1/2} = q L^4 / (427 E I)$$
 (3d)

where

 $\bar{o}_{1/2}$ = deflection at x = L / 2 (m, ft)

Support Reactions

$$R_A = 2 q L / 5$$
 (3e)
 $R_B = q L / 10$ (3f)

$$F_{d} := \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} + 5 \cdot \frac{P_{d_surch} \cdot \left(h_{wall} - t_{gr_slab}\right)}{8} = 977.778 \cdot plf$$

Project Location: For 3804 Mercer Way Mercer Island WA 98040

Resisting force

$$F_{res} := P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} \dots = 4.082 \times 10^{5} \cdot \text{plf} + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$$

It is more than or equal 1.5

2

Check Sliding Capacity for Seismic Load Lateral earth force from active pressure

$$F_{d} \coloneqq \frac{2}{5} \cdot p_{a} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} + \frac{5}{8} \cdot P_{d_surch} \cdot \left(h_{wall} - t_{gr_slab}\right) \dots = 1.026 \times 10^{3} \cdot \text{plf}$$

$$+ \frac{\frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right) + \left(\frac{P_{d_wall}}{2} + P_{d_found} + P_{d_key}\right) \cdot PGA \cdot \frac{1}{2}}{\text{Resisting Force}}$$

$$= 1.026 \times 10^{3} \cdot \text{plf}$$

$$F_{res} := P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} \dots = 4.082 \times 10^{3} \cdot \text{plf}$$
$$+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)$$

$$\frac{0.9F_{res} \cdot \mu + \frac{1}{2}p_{p} \cdot (h_{key})^{2}}{F_{d}} = 1.253$$
 It is more than 1.0
Check Overturning Capacity for Dead Load

Lateral moment about toe due to soil pressure

$$\begin{split} \mathbf{M}_{\mathbf{d}} &\coloneqq \frac{1}{15} \cdot \mathbf{p}_{\mathbf{o}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{3} + \frac{2}{5} \cdot \mathbf{p}_{\mathbf{o}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{2} \cdot \left(\mathbf{h}_{\mathbf{key}}\right) \dots &= 1.086 \cdot \frac{\mathrm{kip} \cdot \mathrm{ft}}{\mathrm{ft}} \\ &+ \frac{\mathrm{P}_{\mathbf{d_surch}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{2}}{8} + \frac{5}{8} \cdot \mathrm{P}_{\mathbf{d_surch}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right) \cdot \mathbf{h}_{\mathbf{key}} \end{split}$$

Resisting moment

$$\begin{split} M_{\text{res}} &\coloneqq P_{d_\text{wall}} \cdot \left(L_{\text{toe}} + \frac{t_{\text{wall}}}{2} \right) + P_{d_\text{found}} \cdot \left(\frac{L_{\text{toe}} + t_{\text{wall}} + L_{\text{heel}}}{2} \right) \dots &= 3.312 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}} \\ &+ P_{d_\text{key}} \cdot \frac{t_{\text{key}}}{2} + P_{\text{slab.on.found}} \cdot \frac{L_{\text{toe}}}{2} \dots \\ &+ L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{\text{gr}_\text{slab}} - t_{\text{foun}} \right) \cdot \left(\frac{L_{\text{heel}}}{2} + t_{\text{wall}} + L_{\text{toe}} \right) \end{split}$$

It is more than 1.5

Check Overturning Capacity for Seismic Load

Lateral moment about toe due to soil pressure

$$\begin{split} \mathbf{M}_{\mathbf{d}} &\coloneqq \frac{1}{15} \cdot \mathbf{p}_{\mathbf{a}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{3} + \frac{2}{5} \cdot \mathbf{p}_{\mathbf{a}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{2} \cdot \left(\mathbf{h}_{\mathbf{key}}\right) \dots \\ &+ \frac{\mathbf{P}_{\mathbf{d_surch}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{2}}{8} + \frac{5}{8} \cdot \mathbf{P}_{\mathbf{d_surch}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right) \cdot \mathbf{h}_{\mathbf{key}} \dots \\ &- \frac{\Delta \mathbf{p}_{\mathbf{eq}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right)^{2}}{8} + \frac{5}{8} \cdot \Delta \mathbf{p}_{\mathbf{eq}} \cdot \left(\mathbf{h}_{\mathbf{wall}} - \mathbf{t}_{\mathbf{gr_slab}}\right) \cdot \mathbf{h}_{\mathbf{key}} \dots \\ &+ \frac{\left(\frac{\mathbf{P}_{\mathbf{d_wall}}}{2} \cdot \left(\frac{\mathbf{h}_{\mathbf{wall}}}{2} - \mathbf{t}_{\mathbf{foun}}\right) + \mathbf{P}_{\mathbf{d_found}} \cdot \frac{\mathbf{t}_{\mathbf{foun}}}{2} + \mathbf{P}_{\mathbf{d_key}} \cdot \frac{\mathbf{h}_{\mathbf{key}}}{2}\right] \cdot \mathbf{PGA} \cdot \frac{1}{2}}{1.4} \\ &+ \frac{\mathbf{M}_{\mathbf{d}} = 1.224 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}}} \end{split}$$

Resisting moment

$$\begin{split} M_{\text{res}} &\coloneqq P_{d_\text{wall}} \cdot \left(L_{\text{toe}} + \frac{t_{\text{wall}}}{2} \right) + P_{d_\text{found}} \cdot \left(\frac{L_{\text{toe}} + t_{\text{wall}} + L_{\text{heel}}}{2} \right) \dots = 3.312 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}} \\ &+ P_{d_\text{key}} \cdot \frac{t_{\text{key}}}{2} + P_{\text{slab.on.found}} \cdot \frac{L_{\text{toe}}}{2} \dots \\ &+ L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{\text{gr_slab}} - t_{\text{foun}} \right) \cdot \left(\frac{L_{\text{heel}}}{2} + t_{\text{wall}} + L_{\text{toe}} \right) \end{split}$$

 $\frac{0.9 \cdot M_{\text{res}}}{M_{\text{d}}} = 2.434$

It is more than 1.1

Check Overturning Capacity for Dead and Live Load

Lateral moment about toe due to soil pressure

$$\begin{split} \mathbf{M}_{\mathbf{d}} &\coloneqq \frac{1}{15} \cdot \mathbf{p}_{\mathbf{o}} \cdot \left(\mathbf{h}_{\text{wall}} - \mathbf{t}_{\text{gr}_\text{slab}} \right)^3 + \frac{2}{5} \cdot \mathbf{p}_{\mathbf{o}} \cdot \left(\mathbf{h}_{\text{wall}} - \mathbf{t}_{\text{gr}_\text{slab}} \right)^2 \cdot \left(\mathbf{h}_{\text{key}} \right) \dots \\ &+ \frac{\left(\mathbf{P}_{\mathbf{d}_\text{surch}} + \mathbf{P}_{\text{ll}_\text{surch}} \right) \cdot \left(\mathbf{h}_{\text{wall}} - \mathbf{t}_{\text{gr}_\text{slab}} \right)^2}{8} \dots \\ &+ \frac{5}{8} \cdot \left(\mathbf{P}_{\mathbf{d}_\text{surch}} + \mathbf{P}_{\text{ll}_\text{surch}} \right) \cdot \left(\mathbf{h}_{\text{wall}} - \mathbf{t}_{\text{gr}_\text{slab}} \right) \cdot \mathbf{h}_{\text{key}} \qquad \qquad \mathbf{M}_{\mathbf{d}} = 1.202 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}} \end{split}$$

Resisting moment

$$\begin{split} M_{res} &\coloneqq P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) \dots = 3.312 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} \dots \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \\ \hline \frac{M_{res} + \frac{1}{4} p_{p} \cdot \left(h_{key} + t_{foun} - 4in \right)^{3}}{M_{d}} = 2.759 \end{split}$$
 It is more than 1.0

Check Soil Bearing Pressure for DL+LL

$$M_{d} := \frac{1}{15} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} \dots$$
$$+ \frac{\left(P_{d_surch} + P_{ll_surch}\right) \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8}$$

$$\begin{split} M_{\text{res}} &\coloneqq P_{d_\text{wall}} \cdot \left(L_{\text{toe}} + \frac{t_{\text{wall}}}{2} \right) + P_{d_\text{found}} \cdot \left(\frac{L_{\text{toe}} + t_{\text{wall}} + L_{\text{heel}}}{2} \right) \dots &= 3.312 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}} \\ &+ P_{d_\text{key}} \cdot \frac{t_{\text{key}}}{2} + P_{\text{slab.on.found}} \cdot \frac{L_{\text{toe}}}{2} \dots \\ &+ L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{\text{gr}_\text{slab}} - t_{\text{foun}} \right) \cdot \left(\frac{L_{\text{heel}}}{2} + t_{\text{wall}} + L_{\text{toe}} \right) \end{split}$$

 $L_{base} := L_{toe} + t_{wall} + L_{heel}$

$$P := P_{d_wall} + P_{d_found} + P_{d_key} + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$$

$$\left|\frac{M_{res} - M_d}{P} - \frac{\left(L_{toe} + t_{wall} + L_{heel}\right)}{2}\right| = 0.231 \cdot ft$$
 Eccentricity

$$\frac{L_{base}}{6} = 0.5 \cdot ft$$
Eccentricity is within 1/3 of base so base is always in compression

$$\begin{split} \sigma_{\text{toe}} &\coloneqq \frac{P_{\underline{d}_\text{wall}} + P_{\underline{d}_\text{found}} + P_{\underline{d}_\text{key}} + L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(\underline{h_{\text{wall}} - t_{\text{gr}_\text{slab}} - t_{\text{foun}}}{L_{\text{toe}} + t_{\text{wall}} + L_{\text{heel}}}\right) \cdots \\ &+ \frac{M_{\underline{d}} \cdot 0.5 \cdot L_{\text{base}}}{I} - \frac{P_{\underline{d}_\text{wall}} \cdot \left(\frac{L_{\text{base}}}{2} - t_{\text{wall}} - L_{\text{heel}}\right) \cdot 0.5 L_{\text{base}}}{I} \cdots \\ &+ \frac{P_{\underline{d}_\text{key}} \cdot \left(\frac{L_{\text{base}}}{2} - \frac{t_{\underline{key}}}{2}\right) \cdot \left(0.5 L_{\text{base}}\right)}{I} + \frac{P_{\text{slab.on.found}} \cdot \left(\frac{L_{\text{base}}}{2} - \frac{L_{\text{toe}}}{2}\right) \cdot \left(0.5 L_{\text{base}}\right)}{I} \cdots \\ &+ \frac{-L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(\underline{h_{\text{wall}} - t_{\underline{\text{gr}_\text{slab}} - t_{foun}}\right) \cdot \left(\frac{L_{\underline{\text{base}}}}{2} - \frac{L_{\underline{\text{heel}}}}{2}\right) \cdot .5 L_{\underline{\text{base}}}}{I} \cdots \\ &+ \frac{I}{I} \\ \\ \sigma_{\text{toe}} &= 1.014 \times 10^{3} \cdot \text{psf}} \\ \end{split}$$

$$\begin{split} \sigma_{heel} &\coloneqq \frac{Pd_wall + Pd_found + Pd_key + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)}{L_{toe} + t_{wall} + L_{heel}} \dots \\ &+ \frac{-M_d \cdot 0.5 \cdot L_{base}}{I} - \frac{-Pd_wall} \cdot \left(\frac{L_{base}}{2} - t_{wall} - L_{heel}\right) \cdot 0.5 L_{base}}{I} \dots \\ &+ \frac{-Pd_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} - \frac{P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} \dots \\ &+ \frac{L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2}\right) \cdot .5 L_{base}}{I} \dots \\ &+ \frac{\sigma_{heel} = 94.156 \cdot psf}{I} \end{split}$$

Check Soil Bearing Pressure for Seismic

$$\begin{split} \mathbf{M}_{\mathbf{d}} &\coloneqq \frac{1}{15} \cdot \mathbf{p}_{\mathbf{0}} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{3} + \frac{2}{5} \cdot \mathbf{p}_{\mathbf{0}} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2} \cdot \left(\mathbf{h}_{key}\right) \dots \\ &+ \frac{\mathbf{P}_{\mathbf{d}_surch} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \mathbf{P}_{\mathbf{d}_surch} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right) \cdot \mathbf{h}_{key} \dots \\ &- \frac{\Delta \mathbf{p}_{eq} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \Delta \mathbf{p}_{eq} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right) \cdot \mathbf{h}_{key} \dots \\ &+ \frac{\left[\frac{\mathbf{P}_{\mathbf{d}_wall}}{2} \cdot \left(\frac{\mathbf{h}_{wall}}{2} - \mathbf{t}_{foun}\right) + \mathbf{P}_{\mathbf{d}_found} \cdot \frac{\mathbf{t}_{foun}}{2} + \mathbf{P}_{\mathbf{d}_key} \cdot \frac{\mathbf{h}_{key}}{2}\right] \cdot \mathbf{PGA} \cdot \frac{1}{2}}{1.4} \\ &+ \frac{\mathbf{M}_{\mathbf{d}} = 1.521 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}}} \end{split}$$

Resisting moment

$$\begin{split} M_{\text{res}} &\coloneqq P_{d_\text{wall}} \cdot \left(L_{\text{toe}} + \frac{t_{\text{wall}}}{2} \right) + P_{d_\text{found}} \cdot \left(\frac{L_{\text{toe}} + t_{\text{wall}} + L_{\text{heel}}}{2} \right) \dots \\ &\quad = 3.312 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}} \\ &\quad + P_{d_\text{key}} \cdot \frac{t_{\text{key}}}{2} + P_{\text{slab.on.found}} \cdot \frac{L_{\text{toe}}}{2} \dots \\ &\quad + L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{\text{gr}_\text{slab}} - t_{\text{foun}} \right) \cdot \left(\frac{L_{\text{heel}}}{2} + t_{\text{wall}} + L_{\text{toe}} \right) \end{split}$$

 $P \coloneqq P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)$

$$e_{cc} := \left| \frac{0.9 \cdot M_{res} + \frac{1}{4} p_{p} \cdot \left(h_{key} + t_{foun} - 1 \operatorname{ft}\right)^{3} - M_{d}}{P} - \frac{L_{base}}{2} \right| = 1.143 \cdot \operatorname{ft}$$
 Eccentricity

$$\frac{L_{base}}{2} = 1.5 \cdot ft$$
 The resultant is within base

Moment about centroid of foundation

$$\begin{split} M_{\text{center}} &\coloneqq M_{\text{d}} - P_{\text{d}_\text{wall}} \cdot \left(\frac{L_{\text{base}}}{2} - t_{\text{wall}} - L_{\text{heel}} \right) + P_{\text{d}_\text{key}} \cdot \left(\frac{L_{\text{base}}}{2} - \frac{t_{\text{key}}}{2} \right) \dots \\ &+ P_{\text{slab.on.found}} \cdot \left(\frac{L_{\text{base}}}{2} - \frac{L_{\text{toe}}}{2} \right) - L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{\text{gr}_\text{slab}} - t_{\text{foun}} \right) \cdot \left(\frac{L_{\text{base}}}{2} - \frac{L_{\text{heel}}}{2} \right) \\ M_{\text{center}} &= 1.008 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}} \end{split}$$

Axial load on center of foundation

 $P_{center} \coloneqq P_{d_wall} + P_{d_found} + P_{d_key} + P_{slab.on.found} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)$

$$P_{center} = 1.729 \cdot \frac{kip}{ft}$$

 $\sigma_{\text{toe}} = 1.257 \times 10^3 \cdot \text{psf}$

Maximum bearing pressure on soil due to seismic is less than 1.3x1500=1950 psf per IBC OK

Check for Shear and Moment Capacity

Wall Shear and Moment Capacity

 $A_{s.min.wall} \coloneqq 0.0018 \cdot t_{wall} \cdot 12in = 0.173 \cdot in^2$

Provide at least #4@12

Shear Capacity ACI-318

$$\phi V_{c} \coloneqq 0.75 \cdot 2 \cdot \sqrt{\frac{\left| \mathbf{f}_{c} \right|}{psi}} \cdot psi \cdot \left(t_{wall} - 3in \right) = 4.5 \cdot \frac{kip}{ft}$$
 Shear Capacity

$$\phi M_{cap_base} := 0.9 \cdot f_y \cdot 0.2 \frac{in^2}{ft} \cdot \frac{12}{12} \cdot \left(0.9 \cdot \frac{t_{wall}}{2}\right) = 3.24 \cdot \frac{kip \cdot ft}{ft}$$

Moment capacity of wall at the base #4@12"

$$\phi M_{cap_mid} \coloneqq 0.9 \cdot f_y \cdot 0.2 \frac{in^2}{ft} \cdot \frac{12}{12} \cdot \left(0.9 \cdot \frac{t_{wall}}{2}\right) = 3.24 \cdot \frac{kip \cdot ft}{ft} \qquad \text{Moment capacity of wall} \text{ at the middle #4@12"}$$

$$\varphi V_c = 4.5 \cdot \frac{kip}{ft}$$
 Shear capacity of wall

Calculate Demand on Base of Wall (1.4DL+1.6LL+1.6EH)

$$M := 1.6 \frac{1}{15} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^{3} \dots = 1.307 \cdot kip \cdot \frac{ft}{ft}$$
$$+ \frac{\left(1.2 \cdot P_{d_surch} + 1.6 \cdot P_{ll_surch}\right) \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^{2}}{8}$$

 $\frac{M}{\phi M_{cap}base} = 40.326 \cdot \%$

Moment capacity is more than demand moment on wall-OK

$$V := 1.6 \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right)^{2} \dots$$

+ $\frac{5}{8} \cdot \left(1.2 \cdot P_{d_.surch} + 1.6 \cdot P_{ll_.surch}\right) \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right)$

$$V = 1.047 \cdot \frac{\text{kip}}{\text{ft}}$$

 $\frac{V}{\phi V_c} = 23.277.\%$

Shear capacity is more than demand moment on wall-OK

Calculate Demand on Base Wall (1.2DL+1.0LL+1.6EH+1.0EQ)

$$\begin{split} \mathbf{M} &\coloneqq 1.6 \frac{1}{15} \cdot \mathbf{p}_{\mathbf{a}} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab} - \mathbf{t}_{foun} \right)^{3} \cdots \\ &+ \frac{1.2 \cdot \mathbf{P}_{d_surch} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab} - \mathbf{t}_{foun} \right)^{2}}{8} \cdots \\ &+ \frac{\Delta \mathbf{p}_{eq} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab} - \mathbf{t}_{foun} \right)^{2}}{8} \cdots \\ &+ \left[\frac{1.2 \mathbf{P}_{d_wall}}{2} \cdot \left(\frac{\mathbf{h}_{wall}}{2} - \mathbf{t}_{foun} \right) \right] \cdot \frac{\mathbf{PGA}}{2} \\ &\qquad \mathbf{M} = 1.385 \cdot \mathbf{kip} \end{split}$$

 $\frac{M}{\phi M_{cap base}} = 42.733.\%$

$$V := 1.6 \frac{2}{5} \cdot p_{a} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right)^{2} + 1.2 \frac{5}{8} \cdot P_{d_surch} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right) ..$$

$$+ \frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right) + \left(\frac{1.2P_{d_wall}}{2}\right) \cdot \frac{PGA}{2}$$

$$V = 0.977 \cdot \frac{kip}{ft}$$
Shear capacity is more than demand moment on wall-OK

 $A_{smin.wall} \coloneqq 0.0018 \cdot t_{wall} \cdot 12in = 0.173 \cdot in^2$

Ok use #4@12" vertical and horizontal

Toe Foundation Shear and Moment Capacity

Toe Foundation Shear and Moment Capacity

$$A_{smin.found.L} := \frac{0.0018 \cdot t_{foun} \cdot L_{base}}{0.2in^2} = 3.24$$

$$A_{\text{smin.found.T}} \coloneqq \frac{0.0018 \cdot t_{\text{foun}} \cdot 10 \text{in}}{0.2 \text{in}^2} = 0.9$$

Provide 4-#4 rebar longitudinal

Provide- #4@10" rebar transverse

Shear Capacity ACI-318

$$\phi V_{c} := 0.75 \cdot 2 \cdot \sqrt{\frac{|f_{c}|}{psi}} \cdot psi \cdot (t_{foun} - 3in) = 6.3 \cdot \frac{kip}{ft}$$

Shear Capacity

Moment capacity of wall

$$\phi M_{cap} := 0.9 \cdot f_{y} \cdot \left(0.2 \frac{in^2}{ft} \cdot \frac{12}{10} \right) \cdot \left(0.9 \cdot \frac{t_{foun}}{2} \right) = 4.86 \cdot \frac{kip \cdot ft}{ft}$$

$$\phi V_c = 6.3 \cdot \frac{kip}{ft}$$

Shear capacity of wall

Calculate demand on toe under soil pressure (1.2DL+1.6LL+1.6EH)

Moment about centroid of foundation

$$M_{d} \coloneqq 1.6 \frac{1}{15} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} \dots$$
$$+ \frac{\left(1.2 \cdot P_{d_.surch} + 1.6 \cdot P_{ll_.surch}\right) \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8}$$

$$\begin{split} \mathsf{M}_{\text{center}} &\coloneqq \mathsf{M}_{d} - 1.2\mathsf{P}_{d_\text{wall}} \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \mathsf{t}_{\text{wall}} - \mathsf{L}_{\text{heel}}\right) + 1.2\mathsf{P}_{d_\text{key}} \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \frac{\mathsf{t}_{\text{key}}}{2}\right) \dots \\ &+ 1.2 \cdot \mathsf{P}_{\text{slab.on.found}} \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \frac{\mathsf{L}_{\text{toe}}}{2}\right) \dots \\ &+ -1.2\mathsf{L}_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(\mathsf{h}_{\text{wall}} - \mathsf{t}_{\text{gr}_\text{slab}} - \mathsf{t}_{\text{foun}}\right) \cdot \left(\frac{\mathsf{L}_{\text{base}}}{2} - \frac{\mathsf{L}_{\text{heel}}}{2}\right) \end{split}$$

 $M_{center} = 1.309 \cdot kip$

Axial load on center of foundation

$$\begin{split} P_{\text{center}} &\coloneqq 1.2P_{\text{d}_\text{wall}} + 1.2P_{\text{d}_\text{found}} + 1.2P_{\text{d}_\text{key}} + 1.2 \cdot P_{\text{slab.on.found}} \cdots \\ &\quad + 1.6L_{\text{heel}} \cdot \gamma_{\text{soil}} \cdot \left(h_{\text{wall}} - t_{\text{gr}_\text{slab}} - t_{\text{foun}}\right) \end{split}$$

$$P_{\text{center}} = 2.343 \cdot \frac{\text{kip}}{\text{ft}}$$

$$\frac{\max(\left|M_{toe}\right|, \left|M_{heel}\right|)}{\phi M_{cap}} = 25.573.\% \qquad \frac{\max(\left|V_{toe}\right|, \left|V_{heel}\right|)}{\phi V_{c}} = 12.004.\%$$

Calculate demand on toe under soil pressure (1.2DL+1.0LL+1.6EH+1.0EQ)

Moment about centroid of foundation

$$M_{d} := 1.6 \frac{1}{15} \cdot p_{a} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} \dots$$

$$+ \frac{1.2 \cdot P_{d_surch} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} \dots$$

$$+ \frac{\Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} \dots$$

$$+ \left[\frac{1.2P_{d_wall}}{2} \cdot \left(\frac{h_{wall}}{2}\right)\right] \cdot PGA$$

$$\begin{split} \mathsf{M}_{center} &\coloneqq \mathsf{M}_{d} - 1.2\mathsf{P}_{d_wall} \cdot \left(\frac{\mathsf{L}_{base}}{2} - \mathsf{t}_{wall} - \mathsf{L}_{heel}\right) + 1.2\mathsf{P}_{d_key} \cdot \left(\frac{\mathsf{L}_{base}}{2} - \frac{\mathsf{t}_{key}}{2}\right) \dots \\ &+ 1.2 \cdot \mathsf{P}_{slab.on.found} \cdot \left(\frac{\mathsf{L}_{base}}{2} - \frac{\mathsf{L}_{toe}}{2}\right) \dots \\ &+ -1.0\mathsf{L}_{heel} \cdot \gamma_{soil} \cdot \left(\mathsf{h}_{wall} - \mathsf{t}_{gr_slab} - \mathsf{t}_{foun}\right) \cdot \left(\frac{\mathsf{L}_{base}}{2} - \frac{\mathsf{L}_{heel}}{\mathsf{M}_{center}}\right) \\ &\mathsf{Axial} \mathsf{load} \mathsf{ on center of foundation} \end{split}$$

$$\begin{array}{l} P_{center} \coloneqq 1.2P_{d_wall} + 1.2P_{d_found} + 1.2P_{d_key} + 1.2 \cdot P_{slab.on.found} \cdots \\ & + 1.6L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \end{array}$$

$$P_{center} = 2.343 \cdot \frac{kip}{ft}$$

$$\frac{max(|M_{toe}|, |M_{heel}|)}{\phi M_{cap}} = 32.265 \cdot \% \qquad \frac{max(|V_{toe}|, |V_{heel}|)}{\phi V_{c}} = 15.653 \cdot \% \quad OK$$